期刊文献+

基于变精度动态容差关系的扩充粗糙集模型 被引量:3

Extended Rough Set Model Based on Variable Precision Dynamic Tolerance Relation
下载PDF
导出
摘要 在分析已有扩充粗糙集模型的基础上提出了一种变精度动态容差关系的新模型。设置动态容差度参数来控制该扩展模型的容差关系强度,并且给出了该参数的动态更新算法。设置精度参数来处理存在一定误差的数据,增强了模型的泛化和抗噪能力。最后用UCI中大量不完备数据验证了该模型的有效性。 A variable precision dynamic tolerance relation of extended rough set model was proposed on the basis of analyzing the existing models.A dynamic tolerance degree parameter was set to adjust the extended model from equivalence relation to tolerance relation and its dynamic renewal algorithm was given.A precision parameter was set to deal with a certain extent error data and enhance the generalization and antinomies capability of this model.The UCI database was selected to demonstrate the validity of this ext...
作者 纪霞 李龙澍
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第18期5731-5734,共4页 Journal of System Simulation
基金 国家自然科学基金(60273043) 安徽省自然科学基金(050420204) 安徽省教育厅自然科学基金(2006KJ098B) 安徽省高校拔尖人才基金(05025102)
关键词 不完备信息 粗糙集 变精度 容差关系 incomplete information rough set variable precision tolerance relation
  • 相关文献

参考文献6

二级参考文献23

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2余英泽 王国胤 吴渝.一种基于Rough集理论的不完备信息系统处理方法[J].计算机科学,2001,28(5).
  • 3梁吉业 王江 苗夺谦.推广粗糙集模型下粗糙集与粗糙分类的模糊性度量[J].计算机科学,2001,28(5).
  • 4曾黄麟.粗集理论极其应用--关于数据推理的新方法[M].重庆:重庆大学出版社,1988..
  • 5[1]Pawlak Z, Grzymala-Busse J, Slowin ski R, et al. Rough sets [J]. Communications of the ACM, 1995, 38(11): 88-95.
  • 6[2]Düntsch I, Gediga G. Uncertainty measures of rough set prediction [J]. Artificial Intelligence, 1998, 106: 109-137.
  • 7[3]Ziarko W. Variable precision rough set model [J]. Journal of Computer and System Sciences, 1993, 46: 39-59.
  • 8[4]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning About Data [M]. Dordrecht: Kluwer Academic Publishers, 1991.
  • 9Pawlak Z. Rought Set-Theoretical Aspect of Reasoning about Data. Kluwer Academic Publishers, Dorderecht, Boston,London, 19 91.
  • 10Stefanowski J, Tsoukisa A. On the Extension of Rough Sets under Incomplete Information. In: 7th Intl. workshop,RSFDGRC'99 Yamaguchi, Japan, Proc. New Directions in Rough Sets, Data Mining, and Granular-soft Computing, 1999.73~81.

共引文献587

同被引文献25

  • 1杨成福,舒兰.基于容差关系的不完备决策系统属性约简算法[J].计算机技术与发展,2006,16(9):68-69. 被引量:5
  • 2颜锦江,黄兵.不完备信息系统中基于相似度的变精度粗糙集模型[J].系统工程理论与实践,2006,26(10):67-72. 被引量:16
  • 3PAWLAK Z. Rough sets [J]. International Journal of Compu- ter and Information Science, 1982,11(5): 341-356.
  • 4KRYSZKIEWICZE M. Rough set approach to incomplete infor- mation system[J]. Information Sciences, 1998, 112: 39-49.
  • 5KRYSZKIEWICZ M. Rules in incomplete information sys- tem [J]. Information Science, 1999, 113: 271-293.
  • 6STEFANOWSKI J, TSOUKIAS A. On the extension of rough sets under incomplete information [C]//Proc. of the 7th Int'l Workshop on New Directions in Rough Sets, Data Mining, and Granular Soft Computing. Berlin: Springer- Verlag, 1999: 73-81.
  • 7Li L, Darden T A, Weingberg C R, et al.Gene assessment and sample classification for gene expression data using a genetic algorithm/??-nearest neighbor method[J].Combinatorial Chemistry and High Throughput Screening, 2001, 4(8) : 727-739.
  • 8Yasui Y, Pepe M, Hsu L, et al.Partially supervised learning using an em-boosting algorithm[J].Biometrics, 2004, 60(1): 199-206.
  • 9Malossini A, Blanzieri E, Ng R T.Detecting potential labeling errors in microarrays by data perturbation[J].Bioinformatics, 2006, 22(17): 2114-2121.
  • 10Steven W Norton, Haym Hirsh.Classifier learning from noisy data as probabilistic evidence combination[C].Proc of the 10 th National Conf on Artificial Intelligence.Menlo Park, 1992: 141-146.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部