期刊文献+

VTOL直升机的鲁棒非脆弱H_∞控制 被引量:1

Robust Non-fragile H_∞ Control for VTOL Helicopter
下载PDF
导出
摘要 针对含有飞行时滞的垂直起飞着陆(VTOL)直升机系统,基于Lyapunov稳定性理论和线性矩阵不等式(LMI)方法,设计了考虑加性控制器增益摄动的时滞相关鲁棒非脆弱H∞控制器。利用描述系统变换,得到了状态反馈鲁棒非脆弱H∞控制器存在的充分条件。在无控制增益摄动的情形下,该控制器能够允许更大的飞行时滞。引入凸优化算法,求解使闭环系统渐近稳定且干扰抑制水平最小的最优控制器参数。仿真结果表明所设计的控制器具有良好鲁棒性和非脆弱性。 In consideration of additive controller gain perturbations, a delay-dependent robust non-fragile H∞ controller for a vertical take-off and landing (VTOL) helicopter system with flight time-delays was designed based on Lyapunov stability theory and formulated in the form of linear matrix inequalities (LMIs). A descriptor system transformation was taken to derive a sufficient condition for the existence of a state feedback robust non-fragile H∞ controller. In the case of no control gain perturbations, this controller was able to ensure a larger flight time-delay. The convex optimization algorithm was introduced to obtain the minimal disturbance attenuation level and parameters of optimal H∞ controller which stabilized the closedloop system asymptotically. Simulation results show that the designed controller has good robust and non-fragile performance.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第18期5807-5811,共5页 Journal of System Simulation
基金 国家高技术研究发展(863)计划项目(2004AA412030) 教育部暨辽宁省流程工业综合自动化重点实验室开放课题项目
关键词 飞行时滞 H∞控制 非脆弱 鲁棒 描述系统变换 VTOL直升机 线性矩阵不等式 flight time-delay H∞ control non-fragile robust descriptor system transformation VTOL helicopter linear matrix inequalities
  • 相关文献

参考文献10

  • 1Keel L H, Bhattacharyya S P, Howze J W. Robust Control with Structured Perturbations [J]. IEEE Transaction on Automatic Control (S0018-9826), 1988, 33(1): 68-78.
  • 2Singh S N, Coelho A R. Nonlinear Control of Mismatch Uncertain Linear Systems and Application to Control of Aircraft [J]. Journal of Dynamic Systems, Measurement and Control (S1528-9028), 1984, 106(2): 203-210.
  • 3Alpaslan Parlakci M N. Improved Robust Stability Criteria and Design of Robust Stabilizing Controller for Uncertain Linear Time-delay Systems [J]. International Journal of Robust and Nonlinear Control (S1049-8923), 2006, 16: 599-636.
  • 4Yang G H, Wang J L, Lin C. H∞ Control for Linear Systems with Additive Controller Gain Variations [J]. Int. J. Control (S0020-7179), 2000, 73(16): 1500-1506.
  • 5Yang G H, Wang J L. Non-fragile H∞ Control for Linear Systems with Multiplicative Controller Gain Variations [J]. Automatica (S0005-1098), 2001, 37(5): 727-737.
  • 6蔡云泽,何星,许晓鸣,张卫东.一类非线性时滞不确定性系统的鲁棒H_∞滤波[J].系统仿真学报,2004,16(1):133-136. 被引量:5
  • 7Park J H. Robust Non-fragile Guaranteed Cost Control of Uncertain Large-scale Systems with Time-delays in Subsystem Interconnections [J]. International Journal of Systems Science (S0020-7721), 2004, 35(4): 233-241.
  • 8Gu K, Kharitonov V L, Chen J. Stability of Time-delay Systems [M]. Boston, MA, USA: Birkhauster, 2003.
  • 9Wu M, He Y, She J H, et al. Delay-dependent Criteria for Robust Stability of Time-varying Delay Systems [J]. Automatiea (S0005-1098), 2004, 40(8): 1435-1439.
  • 10Fridman E, Shaked U. An Improved Stabilization Method for Linear Time-delay Systems [J]. IEEE Transaction on Automatic Control (S0018-9826), 2002, 47(11): 1931-1937.

二级参考文献13

  • 1[1]Lee J H,Kim SW,Kwon W H.Memoryless controllers for state delayed system [J].IEEE Trans.on Automat Contr,1994,39(1): 159-162.
  • 2[2]LiH,Niculescus S I,Dugard L,Dion J M.Robust controller of uncertain linear time-delay systems:A linear matrix inequality approach[A].Part I.Proc.35th Conf .on Decision and Control[C],Kobe,Japan,1996,1379-1375.
  • 3[3]Song S H,Kim I E.control of discrete-time linear systems with norm-bounded uncertainties and time delay in state[J].Automatica,1998,34(1): 137-139.
  • 4[4]Wang Z,Huang B,Unbehauen H.Robust observer design of linear state delayed systems with parametric uncertainty: The discrete -time case [J].Automatica,1999,35: 1161- 167.
  • 5[5]Hsiao F,Pan S.Robust Kalman filter synthesis for uncertain multiple time-delay stochastic systems[J].J.Dyn.Syst.Meas.Contr.,1996,118: 803-808.
  • 6[6]M Mahmoud S,AI-Muthairi N F,Bingulac S.Robust Kalman filtering for continuous time-lag systems[J].Syst.Contr.Lett.,1999,38:309-319.
  • 7[7]Cai Y Z,Xu X M,He X,Zhang W D.Robust filter design for a class of linear systems with time delay and parameter uncertainty [DB].American Control Conference,Anchorage,Alaska,USA,2002,2194-2195.
  • 8[8]Wang Z,Keith J Burnham.Robust filtering for a class of stochastic uncertain nonlinear time-delay systems via exponential state estimation [J].IEEE Trans.Signal Processing,2001,49: 794-804.
  • 9[9]De Souza C E,Xie L,Wang Y.filtering for a class of uncertain nonlinear systems[J].Syst.Contr.Lett.,1993,20: 419-426.
  • 10[10]Khargonekar P P,Petersen I R,Zhou K.Robust stabilization of uncertain linear system: Quadratic stabilizability and control theory [J].IEEE Trans.Automat.Contr,1990,35: 356-361.

共引文献4

同被引文献23

  • 1淳于江民,张珩.无人机的发展现状与展望[J].飞航导弹,2005(2):23-27. 被引量:92
  • 2Valavanis K P. Advances in unmanned aerial vehiclesstate of the art and the road to autonomy,intelligentsystems, control and automation : Science andengineering [ M ]. Berlin, Germany : Springer-Verlag,2007:73-114.
  • 3Bramwell A R S, Done G, Balmford D. Bramwell* shelicopter dynamics [ M ]. 2nd ed. Oxford, UK:Butterworth-Heinemann ,2001:77-114.
  • 4Lien C H. Non-fragile guaranteed cost control foruncertain neutral dynamic systems with time-varyingdelays in state and control input[ J]. Chaos,Solitons &Fractals,2007,31(4) :889-899.
  • 5Wang C, Shen Y. Delay-dependent non-fragile robuststabilization and Hx control of uncertain stochasticsystems with time-varying delay and nonlinearity[ J].Journal of the Franklin Institute,2011 ; 348 ( 8 ):2174-2190.
  • 6Hu H,Jiang B,Yang H. Non-fragile H2 reliable controlfor switched linear systems with actuator faults [ J ].Signal Processing,2013,93 (7) :1804-1812.
  • 7Ren J C,Zhang Q L. Non-fragile PD state controlfor a class of uncertain descriptor systems[ J] . AppliedMathematics and Computation, 2012,218 (17):8806-8815.
  • 8Boyd S, Ghaoui L E, Feron E, et al. Linear matrixinequalities in system and control theory [ M ].Philadelphia, PA,USA ; SIAM,1994.
  • 9Chilali M, Gahinet P, Apkarian P. Robust pole-placement in LMI regions [ J ]. IEEE Transactions onAutomatic Control, 1999,44( 12) :2257-2270.
  • 10Scherer C,Gahinet P, Chilali M. Multi-objectiveoutput-feedback control via LMI optimization[ J]. IEEETransactions on Automatic Control,1997 : 42 ( 7 ) : 896-911.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部