期刊文献+

基于可用度的N部件可修串联系统最优更换策略 被引量:7

Optimal Replacement Policy for Series Repairable System of N Components Based on Availability
下载PDF
导出
摘要 可修串联系统是一类经典的可靠性模型,在实际系统中较为常见。在假定故障部件不能"修复如新"的条件下,基于几何过程模型研究可修串联系统的最优更换策略。推导出系统经长期运行单位时间内期望效益和期望可用度的表达式,在此基础上以可用度为目标函数,以费用率为约束条件建立维修策略优化模型。给出算例,通过与目前现有结果的比较,验证新模型的合理性。 A series repairable system is one of the classical reliability models and is usually used in practice. An optimal replacement policy for series repairable system is studied assuming that the component after repair is not "as good as new" by using the geometric process model. The expressions of the longrun expected benefit and the availability per unit time are deduced. Furthermore, the replacement policy model is presented with minimizing the availability rate subject to an appropriate cost rate. Lastly, a numerical example is presented, the results compared with the actual ones approve that the new model is reasonable.
出处 《兵工学报》 EI CAS CSCD 北大核心 2009年第8期1103-1107,共5页 Acta Armamentarii
关键词 系统评估与可行性分析 串联系统 更新过程 几何过程 不完全维修 更换策略 systematic evaluation and feasibility analysis series system renewal process geometric process imperfect repair replacement policy
  • 相关文献

参考文献10

  • 1Barlow R E, Hunter L C. Optimum preventive maintenance policy [J]. Operations Research, 1960, 8:90- 100.
  • 2Brown M, Proschan F. Imperfect repair[J]. Application Probability, 1983, 20:851 - 859.
  • 3Pham H, Wang H. Imperfect maintenance[J]. European Journal of Operational Research, 1996, 94 : 425 - 438.
  • 4Lam Y. A note on the optimal replacement problem [ J ]. Advances in Applied Probability, 1988, 20: 479- 482.
  • 5Zhang Y L, Wang G J. A bivariate optimal replacement policy for a multistate repairable system [ J ]. Reliability Engineering and System Safety, 2007, 92: 535- 542.
  • 6Lam Y. A geometric process maintenance model [ J ]. Southeast Asian Bulletin of Mathematics, 2003, 27:295 - 305.
  • 7Lam Y. A geometric process maintenance model with preventive repair[ J ]. European Journal of Operational Research, 2007, 182 : 806 - 819.
  • 8Lam Y, Zhang Y L. Analysis of a two-component series system with a geometric process model [ J ]. Naval Research Logistics, 1996, 43: 491- 502.
  • 9Zhang Y L, Wang G J. A geometric process repair model for a series repairable system with k dissimilar components [ J ]. Applied Mathematical Modeling, 2007, 31: 1997-2007.
  • 10Wang G J Zhang Y L. An optimal replacement policy for a two-component series system assuming geometric process repair [J]. Computers and Mathematics with Applications, 2007, 54:192 - 202.

同被引文献80

  • 1毛昭勇,宋保维,李正,胡海豹.并联系统预防性维修费用的优化方法[J].系统仿真学报,2005,17(4):819-821. 被引量:10
  • 2吴少敏,张元林.修理情形不同的两部件串联系统的可靠性分析[J].应用数学,1995,8(1):123-125. 被引量:18
  • 3苏春,黄茁,许映秋.基于可用度和维修成本的设备维修建模与优化[J].中国机械工程,2007,18(9):1096-1099. 被引量:13
  • 4Khalil Z S, Availability of series system with various hut-off rules[J].IEEE Trans. Reliability R, 1985,34:187-189.
  • 5Chao M T, Fu J C, The reliability of a large series system under Markov structure[J]. Advanced Applied Probability, 1991,23:894-908.
  • 6Lam Yeh, Geometric processes and replacement problem[J].ACTA Mathematic Applicate Sinica, 1988, 4(4):366-377.
  • 7Lam Yeb, A note on the optimal replacement problem[J].Advanced Applied Probability, 1988,20: 479-482.
  • 8Braun W J, Li W, Zhao Y Q.Some theoretical properties of geometric and a- series process[J]. Communications in Statistics Theory and Methods, 2008,37:1483-1496.
  • 9Yuan Lin Zhang. A geometric process repair model for a repairable system with delayed repair[J]. Computers and Mathematics with Applications, 2008(55): 1629-1643.
  • 10Guan Jun Wang, Yuan Lin Zhang. An optimal replacement policy for a two-component series system assuming geometric process[J]. Computers and Mathematics with Applications,2003,54:192-202.

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部