摘要
文[1]在模糊子域、模糊线性空间理论的基础上,给出了模糊内积空间、模糊范数、模糊余内积空间、模糊余范数等概念及其对应的性质.在文[1]的基础上,笔者结合直觉模糊集的相关理论,以模糊内积空间和模糊余内积空间理论为依托,将模糊内积空间及模糊余内积空间理论推广到直觉模糊集的情形,定义了直觉模糊内积空间与直觉模糊余内积空间,相应给出了直觉模糊子域、直觉模糊线性空间、直觉模糊范数、直觉模糊余范数等概念,并讨论了相应的性质.
Based on the theory of fuzzy subfield and fuzzy linear space, the notions of fuzzy inner product space, fuzzy norm, fuzzy co-inner product space, fuzzy co-norm, etc. , and corresponding properties were given in the paper [1]. On the basis of the above paper, the theory of fuzzy inner product space and fuzzy co--inner product space is generalized to intuitionistic fuzzy sets. We define intuitionistic fuzzy inner product spaces and intuitionistic fuzzy co-inner product spaces, give the conceptions of intuitionistic fuzzy subfield, intuitionistic fuzzy linear space, intuitionistic fuzzy norm, intuitionistic fuzzy co-norm and discuss the corresponding properties.
出处
《辽宁师范大学学报(自然科学版)》
CAS
2009年第3期270-274,共5页
Journal of Liaoning Normal University:Natural Science Edition
基金
辽宁省教育厅科学技术研究项目(20060073)
辽宁省自然科学基金资助项目(20052146)
关键词
直觉模糊集
直觉模糊内积空间
直觉模糊余内积空间
intuitionistic fuzzy sets
intuitionistic fuzzy product spaces
intuitionistic fuzzy co-inner product spaces