期刊文献+

Degree sequences of k-multi-hypertournaments

Degree sequences of k-multi-hypertournaments
下载PDF
导出
摘要 Let n and k(n ≥ k 〉 1) be two non-negative integers.A k-multi-hypertournament on n vertices is a pair(V,A),where V is a set of vertices with |V|=n,and A is a set of k-tuples of vertices,called arcs,such that for any k-subset S of V,A contains at least one(at most k!) of the k! k-tuples whose entries belong to S.The necessary and suffcient conditions for a non-decreasing sequence of non-negative integers to be the out-degree sequence(in-degree sequence) of some k-multi-hypertournament are given. Let n and k(n ≥ k 〉 1) be two non-negative integers.A k-multi-hypertournament on n vertices is a pair(V,A),where V is a set of vertices with |V|=n,and A is a set of k-tuples of vertices,called arcs,such that for any k-subset S of V,A contains at least one(at most k!) of the k! k-tuples whose entries belong to S.The necessary and suffcient conditions for a non-decreasing sequence of non-negative integers to be the out-degree sequence(in-degree sequence) of some k-multi-hypertournament are given.
作者 Pirzada S
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第3期350-354,共5页 高校应用数学学报(英文版)(B辑)
关键词 HYPERGRAPH hypertournament IN-DEGREE out-degree multi-hypertournament hypergraph, hypertournament, in-degree, out-degree, multi-hypertournament
  • 相关文献

参考文献12

  • 1Assous R. Enchainabilite et seuil de monomorphie des tournois n-aires, Discrete Math, 1986, 62: 119-125.
  • 2Barbut E, Bialostocki A. A generalization of rotational tournaments, Discrete Math, 1989, 76: 81-87.
  • 3Frankl P. What must be contained in every oriented k-hypergraph, Discrete Math, 1986, 62: 311- 313.
  • 4Gutin G, Yeo A. Hamiltonian paths and cycles in hypertournaments, J Graph Theory, 1997, 25: 277-286.
  • 5Koh Y, Ree S. Score sequences of hypertournament matrices, J Korea Soc Math Educ Ser B: Pure Appl Math, 2001, 8(2): 185-191.
  • 6Koh Y, Ree S. On k-hypertournament matrices, Linear Algebra and Its Applications, 2003, 373: 183-195.
  • 7Landau H G. On dominance relations and the structure of animal societies III, The condition for a score structure, Bull Math Biophys, 1953, 15: 143-148.
  • 8Pirzada S, Zhou G. Score sequences in oriented k-hypergraphs, European J Pure Appl Math, 2008, 1, 3: 10-20.
  • 9Pirzada S, Chishti T A, Naikoo T A. Score lists in [h - k]-bipartite hypertournaments, Discrete Math Appl, To appear.
  • 10Reid K B, Zhang C Q. Score sequences of semicomplete digraphs, Bull ICA, 1998, 24: 27-32.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部