摘要
Let n and k(n ≥ k 〉 1) be two non-negative integers.A k-multi-hypertournament on n vertices is a pair(V,A),where V is a set of vertices with |V|=n,and A is a set of k-tuples of vertices,called arcs,such that for any k-subset S of V,A contains at least one(at most k!) of the k! k-tuples whose entries belong to S.The necessary and suffcient conditions for a non-decreasing sequence of non-negative integers to be the out-degree sequence(in-degree sequence) of some k-multi-hypertournament are given.
Let n and k(n ≥ k 〉 1) be two non-negative integers.A k-multi-hypertournament on n vertices is a pair(V,A),where V is a set of vertices with |V|=n,and A is a set of k-tuples of vertices,called arcs,such that for any k-subset S of V,A contains at least one(at most k!) of the k! k-tuples whose entries belong to S.The necessary and suffcient conditions for a non-decreasing sequence of non-negative integers to be the out-degree sequence(in-degree sequence) of some k-multi-hypertournament are given.