期刊文献+

Complete hypersurfaces in a 4-dimensional hyperbolic space

Complete hypersurfaces in a 4-dimensional hyperbolic space
下载PDF
导出
摘要 This paper gives a classification of complete hypersurfaces with nonzero constant mean curvature and constant quasi-Gauss-Kronecker curvature in the hyperbolic space H4(-1),whose scalar curvature is bounded from below. This paper gives a classification of complete hypersurfaces with nonzero constant mean curvature and constant quasi-Gauss-Kronecker curvature in the hyperbolic space H4(-1),whose scalar curvature is bounded from below.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第3期370-378,共9页 高校应用数学学报(英文版)(B辑)
基金 Supported by the National Natural Science Foundation of China (10771187) the Trans-Century Training Programme Foundation for Talents by the Ministry of Education of China the Natural Science Foundation of Zhejiang Province (101037)
关键词 complete hypersurface mean curvature quasi-Gauss-Kronecker curvature complete hypersurface, mean curvature, quasi-Gauss-Kronecker curvature
  • 相关文献

参考文献16

  • 1Peng C K, Terng C L. The scalar curvature of minimal hypersurfaces in spheres, Math Ann, 1983, 226: 105-113.
  • 2Cheng Q M. Complete minimal hypersurfaces in S^4(1) with constant scalar curvature, Osaka J Math, 1990, 27: 885-892.
  • 3de Almeida S C, Brito F. Minimal hypersurfaces of S^4 with constant Gauss-Kronecker curvature, Math Z, 1987, 195: 99-107.
  • 4Ramanathan J. Minimal hypersurfaces in S^4 with vanishing Gauss-Kronecker curvature, Math Z, 1990, 205: 645-658.
  • 5de Almeida S C, Brito F, de Sousa L M. Closed hypersurfaces of S^4 with two constant curvature functions, Results Math, 2007, 50: 17-26.
  • 6Hasanis T, Savas-Halilaj A, Vlachos T. Minimal hypersurfaces with zero Gauss-Kronecker, Illinois J Math,2005, 49: 523-529.
  • 7Cheng Q M. Curvatures of complete hypersurfaces in space forms, Proc Roy Soc Edinburgh Sect A, 2004, 134: 55-68.
  • 8Hasanis T, Savas-Halilaj A, Vlachos T. Complete minimal hypersurfaces in the hyperbolic space H^4 with vanishing Gauss-Kronecker curvature, Trans Amer Math Soc, 2007,359: 2799-2818.
  • 9Omori H. Isometric immersions of Riemannian manifolds, J Math Soc Japan, 1967, 19:205-214.
  • 10Yau S T. Harmonic functions on complete Riemannian manifolds, Comm Pure Appl Math, 1975, 28: 201-228.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部