期刊文献+

一个时滞肿瘤生长的自由边界问题

A free boundary problem modeling tumor growth with time delays
下载PDF
导出
摘要 研究了一个时滞肿瘤生长自由边界问题,它来源于描述考虑了由于肿瘤细胞分裂速率变化引起肿瘤细胞生长环境的变化而引起的肿瘤细胞凋亡的肿瘤生长模型。在这个问题中考虑两种因素引起肿瘤细胞消亡:一种是肿瘤细胞度过固有的生命周期后自身的凋亡,另一种是肿瘤细胞的分裂速率变化引起生长环境的变化而引起的肿瘤细胞的凋亡,第二种消亡具有时滞.研究了该问题解的非负性,稳态解的存在唯一性和渐近性以及周期解的存在性. A free boundary problem modeling tumor growth with time delays is studied. The problem comes from the model of considering that the changes in proliferation rate can stimulate compensatory changes in apoptosis cell loss. In the problem, two parts that make apoptosis are considered: one is underlying apoptosis, the other is regulatory apoptosis with time delays. Nonnegativity of solutions, state stability, existence and uniqueness, asymptotical behavior of stable solutions, and existence of periodic solutions are studied.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2009年第3期301-305,共5页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10771223)
关键词 时滞微分方程 存在唯一性 渐近性 HOPF分歧 delay differential equation existence and uniqueness asymptotical behavior Hopf bifurcation
  • 相关文献

参考文献14

  • 1Cui Shangbin. Analysis of a mathematical model for the growth of tumors under the action of external inhibitors[J]. J Math Biol, 2002, 44: 395-426.
  • 2Cui Shangbin. Existence of a stationary solution for the modified Ward-King tumor growth model[J]. Adv in Appl Math, 2006, 36: 421-445.
  • 3崔尚斌,艾军.关于抑制物对肿瘤生长直接效果模型的数学分析[J].应用数学学报,2002,25(4):617-625. 被引量:11
  • 4Cui Shangbin, Friedman A. A free boundary problem for a singular system of differential equations: An application to a model of tumor growth[J]. Trans Amer Math Soc, 2003, 355: 3537-3590:.
  • 5Cui Shangbin, Friedman A. Analysis of a mathematical model of the effect of inhibitors on the growth of tumors[J]. Math Biosci, 2000, 164: 103-137.
  • 6Friedman A, Reitich F. Analysis of a mathematical model for the growth of tumors[J]. J Math Biol, 1999, 38: 262-284.
  • 7Greenspan H. Models for the growth of solid tumors by diffusion[J]. Stud Appl Math, 1972, 51: 317-340.
  • 8Greenspan H. On the growth and stability of cultures and solid tumors[J]. J Theor Biol, 1976, 56: 229-242.
  • 9Byrne H M. The effect of time delays on the dynamics of avascular tumour growth[J]. J Math Biosci, 1997, 144: 83-117.
  • 10Cui Shangbin, Xu Shihe. Analysis of mathematical models for the growth of tumors with time delays in cell proliferation[J]. J Math Anal Appl, 2007, 336: 523-541.

二级参考文献11

  • 1Sutherland R. Cell and Environment Interactions in Tumor Microregions: the Multicell Spheroid Model. Science, 1988, 240:177-184
  • 2Adam J, Bellomo N. A Survey of Models for Tumor-immune System Dynamics. Boston: Birkhiuser, 1997
  • 3Greenspan H. Models for the Growth of Solid Tumors by Diffusion. Stud. Appl. Math., 1972, 51: 317-340
  • 4Adam J. A Simplified Mathematical Model of Tumor Growth. Math. Biosci., 1986, 81:224-229
  • 5Byrne H, Chaplain M. Growth of Nonnecrotic Tumors in the Presence and Absence of Inhibitors. Math. Biosci., 1995, 131:130-151
  • 6Ward J, King J. Mathematical Modeling of Avascular Tumor Growth Ⅱ: Modelling Growth Saturation. IMA J. Math. Appl. Med. Biol., 1998, 15:1-42
  • 7Pettet G, Please C, et al. The Migration of Cells in Multicell Tumor Spheroids. Bull. Math. Biol.,2001, 63:231-257
  • 8Friedman A, Reitich F. Analysis of a Mathematical Models for the Growth of Tumors. J. Math. Biol., 1999, 38:262-284
  • 9Cui S, Friedman A. Analysis of a Mathematical Model of the Effect of Inhibitors on the Growth of Tumors. Math. Biosci., 2000, 164:103-137
  • 10Cui S, Friedman A. Analysis of a Mathematical Model of the Growth of Necrotic Tumors. J. Math. Anal. Appl., 2001, 255:636-677

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部