摘要
利用动力系统分支理论和定性理论研究了K(n,-n,2n)方程的显式行波解.并借助于行波解动力学性质对这些解进行取舍,指出一些精确的显式解可能会给出一些错误的信息,即在求解精确的显式行波解前理解该行波解的动力学行为的必要性.文章最后通过数值模拟验证了相关的结论.
Some explicit traveling wave solutions of equation K(n, -n, 2n) are focused on with the help of qualitative theory and bifurcation theory of dynamical system. The dynamical behavior of traveling wave solutions helps to decide whether to choose the solutions or not, thus, some wrong information is possible to be given by precise explicit traveling wave solutions. That is, it is necessary to understand the dynamical behavior of the traveling wave solutions before finding the precise explicit traveling solutions. At last, the related conclusions are testified by means of numerical simulations.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2009年第3期311-318,共8页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(10671069)
上海市重点学科建设项目(B407)
上海市自然科学基金(08ZR1407000)
关键词
行波解
孤立波
周期波
尖波
光滑波
分支理论
traveling wave solution
solitary wave
periodic wave
cusp wave
smooth wave
bifurcation theory