期刊文献+

基于线性多项式的有向门限签名方案

A directed threshold signature scheme based on linear polynomial
下载PDF
导出
摘要 一个(t,n)门限方案就是将密钥K分给n个成员,而任意t个成员合作可以生成密钥K,但只有t-1个成员或者更少的成员不能生成该密钥.大多数(t,n)门限方案都基于Lagrange插值多项式或者是同余理论.文章提出了一种新的基于线性多项式的有向门限方案.此方案中,对消息的签名和验证必须在接受方参与下才能进行. A (t,n) threshold scheme is a scheme to distribute a secret key K to n users in such a way that any t users can cooperate to reconstruct K but a collusion of t - 1 or less users reveal nothing about the secret. Most (t, n) threshold schemes are based on Lagrange interpolation or Chinese Remainder Theorem. This paper proposes a new (t, n) directed-threshold signature scheme based on multivariate linear polynomial and Schnorr's signature scheme. In this signature scheme, the signature receiver has full control over the signature verification process. Nobody can check the validity of signature without the cooperation of the receiver.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2009年第3期341-347,共7页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10271037) 浙江省自然科学基金(M103060)
关键词 有向签名 线性多项式 门限签名 directed signature linear polynomial threshold signature
  • 相关文献

参考文献8

  • 1沈忠华,于秀源.一个安全有效的有向门限签名方案[J].浙江大学学报(理学版),2006,33(4):393-395. 被引量:5
  • 2Desmedt Y, Frankel Y. Threshold cryptosystems[A]. In: Advances in Cryptology-Crypto-89[C]. New York: Springer Verlag, 1990, 307-315.
  • 3Desmedt Y, Frankel Y. Shared generation of authenticators and signatures[A]. In: Advances in Cryptology-Crypto-91[C]. New York: Springer Verlag, 1991, 457-469.
  • 4Desmedt Y. Threshold cryptosystems [J]. European Transaction on Telecommunications and Related Technologies, 1994, 5(4):35-43.
  • 5Shamir A. A polynomial time algorithm for breaking the basic Merkle-Hellman Cryptosys- tem[A]. In: Proceeding of the 23 IEEE Symposium Found on Computer Science[C]. 1982, 142-152.
  • 6Ehud D K, Jonathan W G, Martin E H. On secret sharing systems[J]. IEEE Trans Information Theory, 1983,IT-29:35-41.
  • 7Schnorr C P. Efficient identification and signature for smart cards[A]. In: Advance in Cryptology-Crypto-89[C]. Springer-Verlag, 1990, 239-251.
  • 8Thomas W H. Algebra[M]. New York: Springer-Verlag, 1974.

二级参考文献10

  • 1武丹,李善庆.基于椭圆曲线的代理数字签名和代理多重签名[J].浙江大学学报(理学版),2005,32(1):39-41. 被引量:5
  • 2BOYAR J,CHAUM D,DAMGARD I,et al.Convertible undeniable signatures[C]//Advances in Cryptology-Crypto ' 90.New York:Springer-Verlag,1991:189-205.
  • 3CHAUM D.Designated confirmer signatures[C] //Advances in Cryptology Euro Crypt' 94.New York:Springer-Verlag,1995:86-91.
  • 4LIM C H,LEE P J,Modified Maurer-Yacobi scheme and its applications[C] // Advance in Cryptology-AuscCypt.New York:Springer-Verlag,1993:308-323.
  • 5LIM C H,LEE P J.Security Protocol in Proceedings of International Workshop[ M ].New York:SpringerVerlag,1996.
  • 6DESMEDT Y,FRANKEL Y.Society and group oriented cryptography[C]//Advance in Cryptology-Crypto-87.New York:Springer-Verlag,1988:457-469.
  • 7DESMEDT Y,FRANKEL Y.Shared Generation of Authenticators and Signatures[C]//Advances in Cryptology-Crypto-91.New York:Springer-Verlag,1991:457-469.
  • 8SHAMIR A.How to share a secret[J].Communications of the ACM,1979,22(3):612-613.
  • 9SCHNORR C P.Efficient signature generation by smart cards[J].J of Cryptology,1994,4(3):161-174.
  • 10HAM L.Group-oriented(t,n) threshold digital signature scheme and digital multisignature[J],IEE Proceeding of Computers and Digital and Technique,1994,141(5):307-313.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部