期刊文献+

非线性边界条件下的线性波动方程的解

Solutions to a linear wave equation with nonlinear boundary conditions
下载PDF
导出
摘要 讨论一维线性波动方程和非线性边界条件的关系.证明了一类一维线性波动方程在非线性边界条件下,存在唯一的局部解.同时也证明了由于边界条件的非线性,初始值只要满足一定的条件,即使很小,对应的解也会在有限时间内爆破.在证明过程中,同时给出了爆破时间的上界. This paper was concerned with associated with nonlinear boundary conditions a one-dimensional The unique local linear wave equation solution to the wave equation was proved to exist. The result is that the nonlinearity at the boundary causes a finite time blow up of the solution, even for small initial data. And the upper bound to the blow up time is given in the paper.
作者 王丽华
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期78-81,123,共5页 Journal of East China Normal University(Natural Science)
关键词 波动方程 局部存在性 爆破 wave equation local existence blow up
  • 相关文献

参考文献11

  • 1BALL J. Remarks on blow up and nonexistence theorems for nonlinear evolution equations[J]. Quart J Math Oxford, 1997, 28(2): 473-483.
  • 2GEORGIEV V, TODOROVA G. Existence of solutions of the wave equation with nonlinear damping and source terms[J]. J Diff Eq, 1994, 109(2): 295-308.
  • 3HARAUX A, ZUAZUA E. Decay estimates for some semilinear damped hyperbolic problems[J]. Arch Rational Mech Anal, 1998, 150: 191-206.
  • 4LEVINE H A. Instability and nonexistence of global solutions of nonlinear wave equation of the form Puu = Au + F(u)EJJ. TransAmer MathSoe, 1974, 192: 1-21.
  • 5LEVINE H A. Some additional remarks on the nonexistence of global solutions to nonlinear wave equation[J]. SIAM J Math Anal, 1974(5) : 138-146.
  • 6ZHOU Y. A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in E^n[J]. Appl Math Lett, 2005,18: 281-286.
  • 7ZHOU Y. Global existence and nonexistence for a nonlinear wave equation with damping and source terms[J].Math Nachr, 2005, 278: 1341-1358.
  • 8KOMORNIK A, ZUAZUA E. A diret method for the boundary stabilization of the wave equation[J]. J Math Pure and Appl, 1990, 69: 33-54.
  • 9ZUAZUA E. Uniform stabilization of the wave equation by nonlinear boundary feedback[J]. SIAM J Control and Opt, 1990, 28: 466-477.
  • 10DAFERMOS C M, HRUSA W J. Energy methods for quasilinear hyperbolic initial value problems. Applications to elastodynamies[J].Arch Ratinal Mech Anal, 1985, 87: 267-292.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部