摘要
基于离散等谱问题得到了一族具有双哈密顿结构的Liouville可积系,然后利用半直和的方法得到了其可积耦合系统.
A hierarchy of integrable discrete equations is derived based on discrete isospectral problem. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses bi-Hamihonian structure. Then,integrable couplings of the obtained system is given by means of semi-direct sums of Lie algebras.
出处
《信阳师范学院学报(自然科学版)》
CAS
2009年第4期493-496,共4页
Journal of Xinyang Normal University(Natural Science Edition)
基金
Young Foundation of Xinyang Normal University(20070207)
关键词
等谱问题
哈密顿结构
可积耦合
isospectral problem
hamilton structure
integrable coupling