期刊文献+

一族可积系及其可积耦合(英文) 被引量:2

An Integrable System and its Integrable Coupling
下载PDF
导出
摘要 基于离散等谱问题得到了一族具有双哈密顿结构的Liouville可积系,然后利用半直和的方法得到了其可积耦合系统. A hierarchy of integrable discrete equations is derived based on discrete isospectral problem. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses bi-Hamihonian structure. Then,integrable couplings of the obtained system is given by means of semi-direct sums of Lie algebras.
作者 李柱 张玉娟
出处 《信阳师范学院学报(自然科学版)》 CAS 2009年第4期493-496,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 Young Foundation of Xinyang Normal University(20070207)
关键词 等谱问题 哈密顿结构 可积耦合 isospectral problem hamilton structure integrable coupling
  • 相关文献

参考文献8

  • 1Tu G Z. A trace identity and its application to the theory of discrete integrable systems [ J ]. Journal of Physics A: Mathematical and General ( S1751-8113 ), 1990,23:3903-3922.
  • 2Ma W X. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction[ J]. Chinese Journal of Contemporary Mathematics(S1000-8134) , 1992,13 ( 1 ) :79-89.
  • 3Ablowitz L J. Nonlinear differentinl-differenee equation[ J]. Journal of Mathematical Physics( S0022-2488 ), 1975,16:598-603.
  • 4Ohta Y, Hirota R. A discrete KdV equation and its casorati determinant solution[ J]. Journal of the Physical Society of Japan( S0031-9015 ), 1991,60:2095.
  • 5Blaszak M, Marciniak K. R-matrix approach to lattice integrable Hamiltonian systems [ J ]. Journal of Mathematical Physics ( S0022-2488)., 1994, 35:4661-4682.
  • 6王军民,赵安勇.可作为Bcklund变换的微分差分方程[J].信阳师范学院学报(自然科学版),2006,19(2):139-140. 被引量:2
  • 7Ma W X, Xu X X. A modified Toda spectral problem and its hierarchy of bi-Hamiltonian lattice equations [ J ]. Journal of Physics A : Mathematical and General ( S1751-8113 ) ,2004,37 : 1323-1336.
  • 8Li Z. Discrete integrable system and its coupling[ J]. Chinese Physics B(S1674-1056) ,2009,18 (3) :850-856.

二级参考文献4

  • 1ROGERS C,SCHIEF W K.Intrinsic Geometryof the NLS Equation and its Auto-BT[J].Stud Appl Math,1998,26:267-278.
  • 2COUTE R,MUSETTE M.Painleve Analysis and Backlund Transformation in theKuromoto-Sivashinsky Equation[J].J Phys A:Math and Gen,1989,22:169-177.
  • 3HU X B,ZHU Z N.Some New Results on Blaszak-Marciniak Lattice,Backlund Transformationand Nonlinear Superposition Formular[J].J Phys A,1998,39:4766-4772.
  • 4LEVE D.Nonlinear Differential-Difference Equations as Backlund Transformations[J].JPhys A:Math Gen,1981,14:1082-1098.

共引文献1

同被引文献20

  • 1董焕河,张宁,杨记明.广义KN方程族及其Hamilton结构[J].大学数学,2005,21(2):69-72. 被引量:1
  • 2Ma W X.Symmetry constraint of MKdV equations by binary nonlinearation[J].Journal of Physics A:Mathematical and General,1995,219:1083-1091.
  • 3Ma w X,Gan L.Coupling integrable couplings[J].Mod Phys Lett B,2009,23(15):1847-1860.
  • 4Hu X B.A powerful approach to generate new integrable systms[J].Joumal of Physics A:Mathematical and General,1994,27:2497-2541.
  • 5Ma W X,Xu X X.A modified Toda spectral problem and its hierarchy of bi-Hamiltonian lattice equations[J].Journal of Physics A:Mathemati-cal and General,2004,37:1323-1336.
  • 6Ma W X,Fuchssteiner B.Integrable theory of the perturbation equations[J].Chaos,Solitom and Fractals,1996,7:1227-1250.
  • 7Hu X B,Tam H.Applications of Hirota's bilinear formalism to a two dimensional lattice by Leznov[J].Phys Lett A,2000,276:65-72.
  • 8Zhang Y F,Honwah.A few new higher-dimensional Lie algebras and two types of coupling integrable couplings of the AKNS hierarchy and the KNhierarchy[J].CNSNS(2010),Doi:10.1016/j.cnsns.2010.03.004.
  • 9Hu X B,Clarkson P A.Rational solutions of an extended Lokta-Voltrra equation[J].J Non Math Phys,2002,9(Suppl):75-86.
  • 10Ma W X.A new hierarchy of liouville integrable generalized hamiltonian equations and its reduction[J].Chinese Journal of Contemporary Mathematics,1992,13(1):79-89.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部