期刊文献+

支持向量机的蛋白质远程同源检测方法分析

Analysis of Protein Homology Remote Detection Methods Based on Support Vector Machine
下载PDF
导出
摘要 支持向量机是目前蛋白质远程同源检测应用最成功的方法。在介绍这些基于支持向量机核方法的原理之后,比较这些检测方法的不同之处;再从复杂性角度对比分析不同方法的计算效率;最后指出核方法中核函数的选取也决定支持向量机的分类能力。 Support Vector Machine is the most successful method of protein homology remote detection. After principle of these kernel methods based on support vector machine was presented, differences between these detection methods were compared. Based on viewpoint of complexity, comparative analysis of different calculation methods' efficiency was done. It's concluded that support vector machine classification ability depends on selected kernel function in kernel methods.
出处 《安徽理工大学学报(自然科学版)》 CAS 2009年第3期64-68,共5页 Journal of Anhui University of Science and Technology:Natural Science
基金 国家自然科学基金资助项目(60274026 30570431 60873144) 安徽省优秀青年基金资助项目(06042088) 安徽省教育厅自然科学重点资助项目(2006kj068A) 安徽省人才基金资助项目
关键词 蛋白质远程同源检测 支持向量机 核函数 protein homology remote detection support vector machine kernel function
  • 相关文献

参考文献19

  • 1T SMITH,M WATERMAN. Identification of common molecular subsequences[J]. Journal of Molecular Biology, 1981,147: 195-197.
  • 2S F ALTSCHUL,W GISH,W MILLER,et al. A basic local alignment search tool[J]. Journal of Molecular Biology, 1990,215: 403-410.
  • 3W R PEARSON. Rapid and sensitive sequence comparlslons with FASTP and FASTA[J]. Methods in Enzymology, 1985,183 : 63-98.
  • 4A KROGH, M BROWN ; I MIAN, et al. Hidden Markov models in computational biology: Applications to protein modeling[J]. Journal of Molecular Biology,1994,235:1 501-1 531.
  • 5P BALDI,Y CHAUVIN,T HUNKAPILLER,et al. Hidden Markov models of biological primary sequence information [J]. Proceedings of the National Aeademy of Sciences of the United States of America,1994,91(3):1 059-1 063.
  • 6J PARK, K KARPLUS, C BARRETT, et al. Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods[J]. Journal of Molecular Biology, 1998, 284(4)11 201-1 210.
  • 7S F ALTSCHUL ,T L MADDEN ,A A SCHAFFER, et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs[J]. Nucleic Acids Research, 1997,25 : 3 389-3 402.
  • 8K KARPLUS,C BARRETT,R HUGHEY. Hidden Markov models for detecting remote protein homologies[J]. Bioinformatics, 1998,14(10): 846-856.
  • 9T JAAKKOLA, M DIEKHANS,D HAUSSLER. Using the Fisher kernel method to detect remote protein homologies[C]//In Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology, AAAI Press, Menlo Park ,CA, 1999 :149-158.
  • 10V N VAPNIK. Statistical Learning Theory [M]. Adaptive and learning systems for signal processing, communications, and control. Wiley, New York, 1998: 85-125.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部