期刊文献+

基于进化策略的生理信号情感识别 被引量:1

Recognition of emotion in physiological signals using evolutionary strategies
下载PDF
导出
摘要 针对生理信号的情感识别问题,采用进化策略方法对生理信号进行特征选择,利用智能优化算法的计算复杂度低和收敛速度快等特点,并结合使用近邻法进行分类,有效地解决了生理信号特征组合优化问题,筛选出一定的特征子集来表示相应的人类情感状态.实验仿真表明,该方法可以得到有效的特征组合来进行生理信号的情感状态识别. A novel method was developed to perform feature selection in order to recognize emotion in physiological signals. By combining the near neighbor classifier and the intelligent optimization algorithm, combinatorial optimization problems in physiological signals can be effectively solved and a series of important features can be selected that represent a human's emotional status. Simulations showed that it effectively uses features so extracted from experimental data for recognition of emotional states.
出处 《智能系统学报》 2009年第4期352-356,共5页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60873143) 西南大学国家重点学科基础心理学科研基金资助项目(NKSF07003) 重庆市科委自然基金资助项目(2006BB2328)
关键词 进化策略 情感识别 生理信号 特征选择 evolution strategies emotion recognition physiological signals feature selection
  • 相关文献

参考文献12

  • 1PICARD R W, VYZAS E, HEALEY J. Affective wearable [ C ]//Proceedings of the First International Symposium on Wearable Computers. Cambridge, USA, 1997 : 123-128.
  • 2HAAG A, GORONZY S, SCHAICH P, WILLAMS J. Emotion recognition using bio-sensors : first step towards an automatic system [ C]//Affective Dialogue System, Tutorial and Research Workshop. Kloster Irsee, Germany, 2004:36-48.
  • 3PICARD R W, VYZAS E, HEALEY J. Toward machine emotional intelligence : analysis of affective physiological state [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (10) : 1175-1191.
  • 4PUDIL P, NOVOVICJOVA, KITTLER J. Floating search methods in feature selection [ C ]//Pattern Recognition Letters. New York, USA, 1994 : 1119-1125.
  • 5WAGNER J, KIM J, ANDRE E. From physiologieal signals to emotions: implementing and comparing selected methods for feature extraction and classification [ C]//IEEE International Conference on Multimedia & Expo (ICME 2005 ). Amsterdam, The Netherlands, 2005:940-943.
  • 6DARRELL W. An overview of evolutionary algorithms: practical issues and common pitfalls [ J ]. Information and Software Technology, 2001, 43 (14) :817-831.
  • 7SCHWEFEL H P. Numerical optimization of computer models[M]. New York:John Wiley & Sons, 1981:235-237.
  • 8YAO X, LIU Y. Fast evolutionary programming[ C]//Proceedings of the Fifth International Conference on Evolutionary Computation. Cambridge, USA: The MIT Press, 1996: 441- 450.
  • 9SHAFFER J D, MORISHIMA A. An adaptive crossover distribution mechanism for genetic algorithms [ C ]//Proceedings of the Second International Conference on Genetic Algorithm (ICGA2). Hillsdale, USA: Lawrence Erlbaum Associates, 1987 : 36-40.
  • 10GEHLHAAR D K, FOGEL D B. Two new mutation operators for enhanced search optimization in evolutionary programming[ C]//The Proceedings of SPIE San Jose, USA, 1997 : 260 -269.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部