期刊文献+

基于内积向量的复合材料结构损伤检测 被引量:1

DAMAGE DETECTION OF COMPOSITE STRUCTURES BASED ON INNER PRODUCT VECTOR
原文传递
导出
摘要 提出了内积向量(Inner Product Vector,IPV)的概念,证明了在白噪声激励下内积向量是由结构各阶模态振型叠加而成,且每阶模态的加权因子仅与结构的模态参数有关,并在此基础上提出了应用内积向量进行结构损伤检测的方法。该方法仅仅利用在白噪声激励下测试的结构振动响应信号,避免了结构有限元建模误差和结构固有模态识别误差对损伤检测结果的影响。通过对复合材料层合梁和层合板的分层损伤检测算例,验证了该方法检测损伤的有效性及准确性。 Inner product vector (IPV) is proposed to characterize the cross correlation of the measured vibration responses of the structure. Then a new damage detection method is put forward based on this concept. It is theoretically proved that the elements in the IPV of a structure is the inner product of the time domain vibration responses of corresponding measuring points, and this vector can be directly calculated by using the measured time domain vibration responses. Under white noise excitation, the IPV of a structure is the superpostion of the vibration modes of the structure, and the contribution of each mode shape only depends on the modal parameters of the structure. Therefore the IPV involves health information of a structure and the difference of the IPVs between the intact and damaged structure can be used as the damage index. The damage location is identified by the abrupt change of IPV curve of the structure. Numerical simulation of the delamination damage detection for a composite laminated beam and plate demonstrate the feasibility and effectiveness of the proposed method.
出处 《工程力学》 EI CSCD 北大核心 2009年第9期191-196,共6页 Engineering Mechanics
基金 教育部新世纪优秀人才计划项目(NCET-04-0965) 航空科学基金项目(04I53072) 高等学校博士学科点专项科研基金项目(20060699001)
关键词 内积向量 互相关函数 损伤检测 复合材料结构 分层损伤 inner product vector (IPV) cross correlation function damage detection composite structure delamination
  • 相关文献

参考文献11

  • 1Doebling S W, Farrar C R, Prime M B. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review [R]. Los Alamos National Laboratory Report LA-13070-MS, 1996.
  • 2Sohn H S, Farrar C R, Hemez F M. A review of structural health monitoring literature: 1996-2001 [R]. Los Alamos National Laboratory Report LA-13976-MS, 2003.
  • 3Farrar C R, Worden K. An introduction to structural health monitoring [J]. Philosophical Transactions of the Royal Society A, 2007, 365: 303- 305.
  • 4Fritzen C-P, Bohle K. Global damage identification of the 'STEELQUAKE' structure using modal data [J]. Mechanical Systems and Signal Processing, 2003, 17(1): 111-117.
  • 5Messina A, Williams E J, Contursi T. Structural damage detection by a sensitivity and statistical-based method [J]. Journal of Sound and Vibration, 1998, 216(5): 791 -808.
  • 6Yu L, Cheng L, Yam L H. Experimental validation of vibration-based damage detection for static laminated composite shells partially filled with fluid [J]. Composite Structures, 2007, 79: 288-299.
  • 7Yang Z C, Yu Z F, Sun H. On the cross correlation function amplitude vector and its application to structural damage detection [J]. Mechanical Systems and Signal Processing, 2007, 21: 2918-2932.
  • 8James G H Ⅲ, Came T G; Lauffer J E The Natural Excitation Technique (NEXT) for modal parameter extraction from operating structures [J]. International Journal of Analytical and Experimental Modal Analysis, 1995, 10(4): 260-277.
  • 9Farrar C R, James G H Ⅲ. System identification from ambient vibration measurements on a bridge [J]. Journal of Sound and Vibration, 1997, 205(1): 1 - 18.
  • 10Orfanidis S J. Optimum signal processing: An introduction [M]. 2nd Edition. Englewood Cliffs, NJ: Prentice-Hall, 1996.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部