期刊文献+

一种自适应动态阴性选择入侵检测算法研究

STUDY ON A SELF-ADAPTED DYNAMIC NEGATIVE SELECTION ALGORITHM FOR INTRUSION DETECTION
下载PDF
导出
摘要 基于亲和力培育的动态阴性选择算法用于产生能适应"非我"变化的检测器,该检测器可以用于入侵检测。由于算法参数亲和力阈值必须设定为常数,从而不能适应"自我"的变化。通过模拟T细胞的培育过程,提出了匹配区域模型,基于该模型进而提出了改进的动态阴性选择算法。通过设置匹配区域使检测器实现了自我耐受和自动适应"自我"的变化,从而解决入侵检测系统的自适应问题。通过异常检测的模拟实验表明所提出的算法更加有效,如时间耗费小、匹配区域能自动适应"自我"的变化。 Dynamic negative selection algorithm based on affinity maturation(DNSA-AM) is used in detectors which generate the variations adap- ting to non-ego,the detector is able to be used in intrusion detection. However,it can not adapt to the change of ego due to the affinity threshold of the algorithm's coefficient has to be the constant. In this paper,by simulating the cultivation process of T-cells maturation,a matching range model is proposed. Based on the model,an augmented dynamic negative selection algorithm is presented. By setting the matching range,self-tolerance and au- tomatic adaptation to the variation of ego on the detectors are achieved,thus the self-adapted issue in intrusion detection has been solved. The proposed algorithm is tested by simulation experiment for anomaly detection. The results show that the algorithm is more effective than DNSA-AM with several excellent characters, such as less time consuming and the matching range automatically adapts to the change of ego.
出处 《计算机应用与软件》 CSCD 2009年第9期57-60,共4页 Computer Applications and Software
基金 浙江省自然科学基金(Y107596 Y105592)
关键词 入侵检测 人工免疫系统 阴性选择 匹配区域模型 Intrusion detection Artificial immune system Negative selection Matching range model
  • 相关文献

参考文献16

  • 1Jian Pei, et al. Data Mining for Intrusion Detection : Techniques, Applications and Systems[ C]. 20th International Conference on Data Engineering, 2004.
  • 2张凤斌,杨永田,江子扬.遗传算法在基于网络异常的入侵检测中的应用[J].电子学报,2004,32(5):875-877. 被引量:30
  • 3Emad Soroush, Mohammad Saniee Abadeh, Jafar Habibi. A Boosting Ant-Colony Optimization Algorithm for Computer Intrusion Detection [ C ]. The IEEE 20th International Symposium on Frontiers in Networking with Applications,2006.
  • 4Walid A, Salameh. Detection of Intrusion Using Neural Networks:A Customized Study, Studies in Informatics and Control ,200d.
  • 5Davy M, Desobry F, Gretton A, et al. An Online Support Vector Machine for Abnormal Events Detection. Signal Processing,2005.
  • 6闫巧,江勇,吴建平.基于免疫机理的网络入侵检测系统的抗体生成与检测组件[J].计算机学报,2005,28(10):1601-1607. 被引量:18
  • 7Zhou Ji, Dasgupta D. Real-Valued Negative Selection using Variable- Sized Detectors. GECC02004,2004.
  • 8Sankalp Balachandran. Multi-shaped Detector generation using Real-valued representation for Anomaly Detection[ J]. Masters Thesis, University of Memphis ,2005.
  • 9Forrest S, Perelson A S, Allen L, et al. Self-nonself Discrimination in a Computer[ C ]. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, 1994.
  • 10Castro L N de, Von Zuben F J. aiNet : An Artificial Immune Network for Data Analysis. Data Mining: A Heuristic Approach, H. A. Abbass, R. A. Sarker, and C. S. Newton ( eds. ) , Idea Group Publishing, USA, Chapter XII,2001,231 - 259.

二级参考文献24

  • 1E Eskin.Anomaly detection over noisy data using learned probability distributions[A].Proceedings of the 17th International Conference on Machine Learning[C].San Mateo,CA:Morgan Kaufmann,2000.255-262.
  • 2T Lane,C Brodley.Temporal sequence learning and data reduction for anomaly detection[J].ACM Trans Info System Security,1999,2:295-331.
  • 3T Lane,C E Brodley.Data reduction techniques for instancebased learning from human/computer interface data[A].Proceedings of the 17th International Conference on Machine Learning[C].San Mateo,CA:Morgan Kaufmann,2000.519-526.
  • 4D Dasgupta,F Gonzalez.An immunity-based technique to characterize intrusions in computer networks[J].IEEE Transactions on Evolutionary Computation,2002,3(6):281-291.
  • 5E Zitzler,L Thiele.Multi-objective evolutionary algorithms:comparative case study and the strength pareto approach[J].IEEE Trans of Evolutionary Computation,1999,3(4):257-271.
  • 6M Srinivas,M Patnaik.Adaptive probabilities of crossover and mutation in genetic algorithms[J].IEEE Trans on Systems,Man,and Cybernetics,1993,24(4):656-667.
  • 7Hofmeyr S.A.. An interpretative introduction to the immune system. In: Cohen I., Segel L. eds.. Design Principles for the Immune System and Other Distributed Autonomous Systems. England: Oxford University Press, 2000.
  • 8Roesch M. Snort- lightweight intrusion detection for networks. In: Proceedings of the 13th USENIX Conference on System Administration, Seattle, Washington, 1999, 229~238.
  • 9Forrest S., Perelson A., Allen L.. Self-noself discrimination in a computer. In: Proceedings of the 1994 IEEE Symposium on Researchin Security and Priracy, Los Alamos, CA, 1994.
  • 10Kim J., Bentley J.P.. An evaluation of negative selection in an artificial immune system for network intrusion detection. In: Proceedings of the Genetic and Evolutionary Computation Conference 2001(GECCO-2001), San Francisco, 2001,  1330~1337.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部