期刊文献+

基于样本密度加权的神经网络分类器在文本分类中的应用 被引量:1

AN APPLICATION OF SAMPLE-DENSITY-WEIGHTED NN CLASSIFIER IN TEXT CLASSIFICATION
下载PDF
导出
摘要 为了提高文本分类精度,根据训练集的样本密度的不同,提出了一种基于k最近邻密度估计的样本加权算法,从而使得样本密度较大的样本权重得到加强,处于样本密度平均水平的样本权重保持不变,而样本密度较小的样本权重得到减弱。并将这种方法所构成的神经网络分类器用于文本分类。实验结果表明,这种方法可以在一定程度上提高文本分类精度,优于原始的未加权的分类方法。 A sample-weighted algorithm based on k nearest density estimation is proposed according to different density of training samples in order to improve the precision of the text classification. Thns the weight of sample with higher density is strengthened, the weight of sample with mean density is kept unchanged, and the weight of sample with less than mean density is weakened. The NN classifier formed in this method is applied in text classification. The experiment results show that this method can improve the precision of text classification to some degree. And the weighted classifier is better than the traditional classifier.
作者 廖一星
出处 《计算机应用与软件》 CSCD 2009年第9期234-236,239,共4页 Computer Applications and Software
关键词 k最近邻密度估计 神经网络 文本分类 k nearest density estimation Neural network (NN) Text classification
  • 相关文献

参考文献7

  • 1CApte, FJDamerau, SM Weiss. Automated Learning of Decision Rules for Text Categorization [ J ]. ACM Trans Information Systems, 1994,12 (3) :233 -251.
  • 2Yiming Yang. An Evaluation of Statistical Approach to Text Categorization[ J ]. Information Retrieval Journal, 1999,1 (1/2) :67 - 88.
  • 3Tom Mitchell. Machine Learning[ M ]. MeCraw Hill, 1996:5 - 68.
  • 4Aas K, Eikvil L. Text Categorization : A Survey[ R]. Norwegian Computing Center, Report NR 941,1999:8 - 9.
  • 5McCallum A, Nigam K. A comparison of event models for naive bayes text classification. Proceeding Of the AAA 98 Workshop on Learning for Text Categorization. Menlo Park, CA: AAAI Press, 1998:41 - 48.
  • 6Rocchio J. Relevance feedback in information retrieval. The SMART Retrieval System:Experiments in Automatic Document Processing. Englewood Cliffs, NJ: Prentice Hall, 1971 : 313 - 323.
  • 7http ://www. nip. org. cn/categories/defauh, php? cat_id =- 16.

同被引文献15

  • 1史晶蕊,郑玉明,韩希.人工神经网络在文本分类中的应用[J].计算机应用研究,2005,22(10):213-216. 被引量:10
  • 2郑玉明,史晶蕊,廖湖声.文本分类的神经网络模型[J].计算机工程,2005,31(21):37-39. 被引量:4
  • 3McCallum A, Nigam K. A comparison of event models for naive bayes text classification [ A ]. Learning for text categori- zation: papers from the 1998 workshop [C]. AAAI Press, 1998.41 - 48.
  • 4Li Y H, Jain A K. Classification of text documents [ J ]. The Computer Journal, 1998, 41(8) : 537 -548.
  • 5Hull D A. Improving text retrieval for the routing problem using latent semantic indexing [ A. Proceedings of SIGIR99, 22nd ACM international conference on research and develop- ment in information retrieval [C]. Dublin, Ireland, 1994. 282 - 289.
  • 6Joachims T. A probabilistic analysis of the Rocchio algo- rithm with TFIDF for text categorization [ A ]. Proceedings of ICML- 97,14th international conference on machine learning [C]. Nashville, TN,1997. 143 - 151.
  • 7C. Cortes and V. Vapnik. Support - Vector networks. Machine Learning, 273 - 297, November 1995.
  • 8Vladimir V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,1995.
  • 9Mitchell T M. Machine learning [M]. New York: McGraw Hill, 1996.
  • 10孙丽华,等.规则分类在文本自动分类中的应用[J].20th International Conference on Computer Processing of Orien- tal Languages Shen yang, China,2003.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部