摘要
针对基本遗传算法的稳定性较差、存在未成熟收敛和易陷入局部最优解的问题,将量子计算与遗传算法进行融合,较好地解决了传统的多阈值图像分割方法中运算量大的问题。实验结果表明量子遗传算法用于阈值寻优减少了搜索时间,提高了收敛效率。
According to the problems of the simple genetic algorithm in poor stability, premature convergence and easily getting into local optimum, the algorithm in this paper combines quantum computation with genetic algorithm, which has a better solution to the problem of traditional multi-threshold image segmentation methods in large amount of computation. The experiment results show that the quantum genetic algorithm reduces the searching time when being used in threshold optimization, and increases the convergence efficiency.
出处
《计算机应用与软件》
CSCD
2009年第9期247-249,共3页
Computer Applications and Software
关键词
图像分割
遗传算法
量子遗传算法
阈值
Image segmentation Genetic algorithm Quantum genetic algorithm Threshold