期刊文献+

中国老鼠问题与G(p,q,f)的4着色 被引量:1

The Chinese Mouse Problem and 4-coluring of G(p,q,f)
下载PDF
导出
摘要 提出了中国老鼠问题.阐明了求解中国老鼠问题的基本思路.发现了基于森林Fi分解的对偶图的顶点4着色方法.提出了森林Fi分解的三种方法.介绍了对偶图G(p,q,f)的A区和B区的划分,森林Fi的分解,以及对偶图G′(f,q,p)的H路径Pi的分解和G(p,q,f)的顶点4着色.讨论了H路径Pi的个数,森林Fi的个数.G(p,q,f)的4着色方案数及A区和B区的划分方案数. The Chinese mouse problem and the basic consept of solving the Chinese mouse problem are described. The method of 4-coluring the vertics of dual on the basis of decomposition into a forest Fi is discovered. Three methods of decomposition into a forest are proposed. The division of dual G(p,q, f) into area A and area B, the decomposition of dual G(p,q,f) into a forest, the decomposition of dual Gr (f,q,p) into Harniltonian path Pi and 4-colouring the vertices of G(p,q,f) are presented. The number of hamiltonian path Pi, the number of forest F/and the number of schemes of 4-colouring G(p,q, f) are discussed.
出处 《西安工业大学学报》 CAS 2009年第4期392-395,共4页 Journal of Xi’an Technological University
基金 国家自然科学基金(10471096)
关键词 老鼠 4着色 森林 对偶图 H路径Pi mouse 4-colouring forest dual hamiltonian path
  • 相关文献

参考文献8

  • 1Bela Bollobas. Graph Thoergy [M]. New York. Springer Verlag, 1973.
  • 2Tutte W T. Graph Theory[M]. Beijing: China Machine Press, 2004.
  • 3Lowell W, Beineke, Robin J. Wilson. Selected Topics in Graph Theory [M]. San Francisco: Academic Press, 1973.
  • 4Bollobas B. Extramal Graph Theory[M]. London: Academic Press, 1978.
  • 5Douglas B. West. Introduction to Graph Theory[M]. Belling: China Machine Press, 2004.
  • 6侴万禧,黄云峰.20面体平图的4着色与对偶树的分解[J].长春工业大学学报,2008,29(6):623-627. 被引量:13
  • 7侴万禧.20面体的4着色[J].渤海大学学报(自然科学版),2009,30(1):37-39. 被引量:7
  • 8万禧,郝朋伟.完全二分图的生成树的个数[J].阜阳师范学院学报(自然科学版),2008,25(4):12-14. 被引量:4

二级参考文献10

  • 1Lowell W. Beineke, Robin J. Wilson. Selected topics in graph theory[M]. London: Academic Press, 1978,
  • 2Bollobas B. Extramal graph theory[M].London: Academic Press, 1978.
  • 3Douglas B. West. Introduction to graph theory[M]. Beijing:China Machine Press, 2004.
  • 4Lowell W.Beineke.Robin J.Wilson.Selected Topics in Graph Theory[M].London:Academic Press.1978.
  • 5Bollobas B.Extramal Graph Theory[M].London;Aeademic Press.1978.
  • 6Douglas B.West Introduction to Graph Theory[M].Beijing..China Machine Press.2004.
  • 7[1]Bela Bollobas.Graph theary[M].New York:Springer Verlag,1973.
  • 8[2]Fred S,Roberts,Barry Tesman.Applied Combinatorics[M].New York:Prentice Hall,2005.
  • 9[3]Kelmans A K.The number of trees in agraph[J].I.Automat.Romote Control,1965,(26):2 118-2 179.
  • 10[4]Beth T,Jangnickel D,Lenz H.Design Theory[M].New York:Combridge University Pres,1997.

共引文献14

同被引文献41

  • 1张忠辅,王建方,王维凡,王流星.若干平面图的完备色数[J].中国科学(A辑),1993,23(4):363-368. 被引量:16
  • 2徐志才.A(Q)类平面图及其可4─着色的证明[J].北京邮电大学学报,1996,19(1):91-94. 被引量:3
  • 3JI Lijun, LEI Jianguo. Further results on large sets of Kirkman triple systems[J]. Discrete Mathematics, 2008,308 (20) ..4643 - 4652.
  • 4ZHANG Huaming, HE Xin. On simultaneous straight-line grid embedding of a planar graph and its dual[J]. Information Processing Letters, 2006,99 (1) : 1 - 6.
  • 5YIN Jianxing, WANG ChengmirL Kirkman covering designs with even-sized holes[J]. Discrete Mathematics, 2009, 309(6) : 1422 - 1434.
  • 6CORI R, ROSSIN D. On the sandpile group of dual graphs[J]. European J Combin, 2000(21) :447 - 459.
  • 7TUTTE W T. Graph Theory[M]. Beijing: China Machine Press, 2004.
  • 8KEMPE A B. On the geographical problem of four colors[J]. Amer J Math, 1879,2(1) :193 - 204.
  • 9HEAWOOD P J. Map colour theorems[J]. Quart J Math, 1890,2(4) :332 - 338.
  • 10APPEL K I, HAKEN W. Every planar map is four colourable[J]. Bull Am Math Soc,1976,82(1) :711 - 712.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部