期刊文献+

基于有效粘贴长度的纤维片材加固RC梁斜截面计算方法 被引量:1

Calculation method of strengthened RC beam oblique section with FRP based on the effective pasting length
下载PDF
导出
摘要 针对目前各国规范标准关于纤维片材加固钢筋混凝土梁斜截面推荐公式,对影响加固效果的关键因素考虑不足.基于纤维片材有效粘贴长度及粘贴层滑移特性,并引入纤维间应力分布系数、初始荷载修正系数及纤维有效应力折减系数,给出了一种新的纤维加固钢筋混凝土斜截面计算公式.最后,在收集60片纤维片材加固钢筋混凝土梁斜截面试验数据基础上,应用统计学原理对本文推荐公式及ACI440等建议公式预测结果进行对比分析.结果表明,该推荐公式预测结果较其他公式准确有效,并对该领域的进一步研究有一定借鉴意义. Present study is aimed at the insufficient consideration of some key factors of recommended formula of the various countries standard about strengthened RC beam oblique section with FRP at present. Based on the effective bond length of FRP and the slipping characteristic of bond layer, the paper introduced FRP stress distribution coefficient, initial stress revise coefficient and FRP stress reduction coefficient, then provided a kind of new formula of strengthen RC beam oblique section finally. Based on the collection of 60 RC beam test data where oblique section is strengthened with FRP. It also predicted the result of the recommendation formula of this text and presented guide for the design and construction of externally bonded FRP systems for strengthening concrete structures (AC1440)etc. The result indicates, the predicted results of this text are accurate and effective to other formula, and there are certain reference meanings to the further research in this field.
出处 《西安建筑科技大学学报(自然科学版)》 CSCD 北大核心 2009年第5期672-676,734,共6页 Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基金 教育部博士点新教师基金资助项目(200807101008) 交通部规范项目资助(2005-5)
关键词 桥梁 钢筋混凝土梁 斜截面 纤维片材加固 计算方法 bridge RC beam oblique section strengthening with FRP calculation method
  • 相关文献

参考文献9

二级参考文献24

共引文献85

同被引文献12

  • 1BUCHAN P A, CHEN J F. Blast resistance of FRP composites and polymer strengthened concrete and masonry structures-a state-of-the-art review [J]. Composites, Part B: Engineering, 2007, 38(5-6):509-522.
  • 2DE Lorenzis L, LA Tegola, A. Bond of FRP laminates to concrete under impulse loading: a simple model [C]//Proc. International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005), Hong Kong, China, pp. 503-508.
  • 3MALVAR L J, CRAWFORD J E. Dynamic increasing factors for concrete [R]. Naval facilities engineering service center, Port Hueneme, CA.
  • 4LU X Z, YE L P, TENG J Get al. Mesco-scale finite element model for FRP sheets/plates bonded to concrete[J].Engineering structures, 2004, 27(4): 564-575.
  • 5BAZANT Z P, OH B H. Crack band theory for fracture of concrete [J]. Materials and Structures (RILEM, Paris), 1983,16(3): 155-177.
  • 6YANG Z J, CHEN J F, Proverbs D. Finite element modelling of concrete cover separation failure in FRP plated RC beams[J]. Construction and Building Materials, 2003, 17(1): pp. 3-13.
  • 7YANG Z J, SU X T, CHEN J F, et al. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials[J] .International Journal of Solids and Structures,2009,46(17): 3222-3234.
  • 8MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997,19(9/10): 847-873.
  • 9CHEN J F, TENG, J.G. Anchorage strength models for FRP and steel plates bonded to concrete[J]. Journal of Structural Engineering, ASCE, 2001,127(7): 784-791.
  • 10WU Z S, YUAN H, Yoshizawa H, et al. Experimental/analytical study on interfacial fracture energy and fracture propagation along FRP-concrete interface[J]. ACI Special Publication, 2001,.201:133-152.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部