期刊文献+

降雨径流模拟神经网络模型及应用 被引量:9

Rainfall-runoff modeling with artificial neural network and genetic algorithm
下载PDF
导出
摘要 针对水文系统的非线性,构建了基于遗传算法和人工神经网络的降雨径流模拟神经网络模型(GA-BP模型).采用附加动量法和自适应学习速率对BP神经网络进行改进,遗传算法用于优化神经网络的初始权重.以大别山及皖南山区月潭流域为例,将GA-BP模型、BP模型以及新安江模型应用于水文日径流过程模拟,进行应用比较以及分析GA-BP模型在水文径流模拟过程中的难点及其可行性.结果表明,GA-BP模型优化了网络结构,加快了算法收敛速率;可以用于降雨径流过程模拟,也为今后类似研究提供一种模拟技术.在实际应用中可以根据流域资料情况选择合适的模型进行水文模拟作业. Considering the non-liner of hydrologic system, an intelligent model, based on ANN and GA, was developed for simulating hydrological daily rainfall-runoff process. BP model is improved with additional momentum algorithm and self- adaptive learning rate algorithm. The original weights of artificial neural networks are optimized by the genetic algorithm. Taking the Yuetan watershed in the south of Anhui province as an example, to evaluate the performance of the developed model, Xinanjiang model and the original BP model were conducted for comparing to the intelligence model so as Reasons and key technologies of applying the improved model in hydrologic simulation were analyzed. The simulation results show that the intelligence model can optimize network structure and accelerate arithmetic convergence and is a successful tool to simulate hydrologic process and it provides a good technique for simuating daily rainfall-runoff and the similar problems. The developed model can be applied in terms of real-time hydrologic information in practice.
出处 《西安建筑科技大学学报(自然科学版)》 CSCD 北大核心 2009年第5期719-722,共4页 Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50479017) 淮河流域气象开放研究基金 教育部长江学者和创新团队发展计划(IRT0717)
关键词 降雨径流模拟 人工神经网络 遗传算法 附加动量法 自适应学习速率 新安江模型 月潭流域 rainfall-runoff simulation artificial neural network genetic algorithm additional momentum algorithm self-adaptive learning rate algorithm Xin'anjiang model Yuetan watershed
  • 相关文献

参考文献8

  • 1葛首西.现代洪水预报技术[M].北京:中国水利水电出版社,1999.
  • 2SINGH VP. Hydrologic Systems, Vol. 2. Watershed Modeling [M]. Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1989.
  • 3ASCE. Task Committee on Application of The Artificial Neural Networks in Hydrology [J]. J. Hydrol. Engng, ASC,2000,5(2) :115-123.
  • 4SAJIKUMAR N, THANDAVESWARA B S. A non-linear rainfall-runoff model using an artificial network[J]. Journal of Hydrology , 1999,21 : 32-55.
  • 5BAO Hong-jun, LI Zhi-jia . Rainfall-runoff simulation with artificial neural network[C]//Proceedings of 1st international conference of modeling and simulation. 2008(1), 143-149.
  • 6鞠琴,余钟波,郝振纯,欧耿鑫,佘超,刘德东.小波网络模型及其在日流量预测中的应用[J].西安建筑科技大学学报(自然科学版),2009,41(1):47-52. 被引量:7
  • 7唐洪武,雷燕,顾正华.河网水流智能模拟技术及应用[J].水科学进展,2008,19(2):232-237. 被引量:12
  • 8ZHAO Ren-jun. The Xinanjiang model applied in China[J]. Journal of Hydrology, 1992,135 : 371-381.

二级参考文献30

  • 1顾正华,唐洪武,高柱,李云,肖洋.基于神经网络的空间流场智能模拟[J].系统仿真学报,2004,16(7):1372-1375. 被引量:3
  • 2韩龙喜,张书农,金忠青.复杂河网非恒定流计算模型──单元划分法[J].水利学报,1994,26(2):52-56. 被引量:26
  • 3张晓伟,黄领梅,沈冰,孙新新,刘敏.灰色自记忆神经网络模型在年径流预测中的应用[J].西安建筑科技大学学报(自然科学版),2006,38(6):761-764. 被引量:7
  • 4LUK K C, BALL J E, SHARMA A. A study of optimal model lag and spatial inputs to artificial neural networks for rainfall forecasting [J]. Journal of Hydrology, 2000, 227:56-65.
  • 5Cieniawski S E, Eheart J W, Ranjithans S. Using genetic algorithms to solve a multiobjective groundwater monitoring problem[J]. Water Resources Research, 1995, 31(2):399-409.
  • 6Ng W W, Panu U S, Lennox W C. Chaos based Analytical techniques for daily extreme hydrological observations [J]. Journal of Hydrology, 2007, 342:17-41.
  • 7VENUGOPAL V, FOUFOULA-GEORGIOU E. Energy decomposition of rainfall in the time-frequency-scale domain using Wavelet packets [J]. Journal of Hydrology, 1996, 187:3-27.
  • 8ASCE. Task committee on application of artificial neural networks in hydrology, 2000a. Artificial neural networks in hydrology Ⅰ: Preliminary concepts [J]. Journal of Hydrologic Engineering, 2000(5):115-123.
  • 9ASCE. Task committee on application of artificial neural networks in hydrology, 2000b. Artificial neural networks in hydrology Ⅱ: Hydrologic applications [J]. Journal of Hydrologic Engineering,2000(5) :124-137.
  • 10MINNS A W. HALL M J. Artificial neural networks as rainfall-runoff models [J]. Hydrological Sciences Journal, 1996, 41:399-417.

共引文献18

同被引文献97

引证文献9

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部