期刊文献+

一种数据选择多级维纳滤波算法

A sample selection multistage Wiener filter
下载PDF
导出
摘要 针对阵列信号自适应处理器收敛性能会由于目标类型干扰影响显著恶化的问题,提出一种采样数据选择算法,可以有效抑制干扰信号对自适应滤波器性能的影响。通过对多级维纳滤波器采用数据选择算法后,显著提高了其抗干扰能力和在非平稳、非高斯环境下的快收敛性能。最后通过实验仿真验证了此算法的有效性。 This paper concerned with the problem that the convergence ability of array signal processor is deteriorated under the condition of the main channel target - liker outlier. A sample selection process was discussed, which is efficient to restrain the deterioration of the convergence ability. By applying the sample selection (SS) to MSWF, enhanced the convergence ability notable, and reached the optimal result closely. In addition, simulation result showed the success of applying SS to MSWF.
作者 黄庆东
出处 《西安邮电学院学报》 2009年第5期32-35,39,共5页 Journal of Xi'an Institute of Posts and Telecommunications
关键词 数据选择多级维纳滤波器算法 多级维纳滤波器 采样协方差求逆 sample selection multistage- Wiener- filter multistage - Wiener - filter sample matrix inversion
  • 相关文献

参考文献6

  • 1C-OLDSTEIN J. S., REED I. S., and SCHARF L. L. , A multistage representation of the wiener filter based on orthogonal projections [ J ], IEEE Trans. Inform. Theory, 1998,44(7) :2943 - 2959.
  • 2GOLDSTEIN J. S., REED I. S., and ZULCH P. A., Multistage Partially Adaptive STAP CFAR Detection Algorithm[J]. IEEE Trans. Aerospace and Electronic Systems, 35(2).645-661, April 1999.
  • 3黄磊,吴顺君,张林让,冯大政.快速子空间分解方法及其维数的快速估计[J].电子学报,2005,33(6):977-981. 被引量:44
  • 4PICCIOLO, M. L., GERLACH, K., Median Cascaded Canceller for Robust Adaptive Array Processing [J ]. IEEE Trans. on Aerospace and Electronic Systems, 39 (3) :883 - 900, July 2003.
  • 5PICCIOLO, M.L., GERLACH, K., Reiterative Median Cascaded Canceler for Robust Adaptive Array Processing[J]. IEEE Trans. on Aerospace and Electronic Systems, 43(2):428-442, April 2007.
  • 6GOLDSTEIN J. S., REED I. S., Performance measures for optimal constrained beamformers [ J ]. IEEE Trans. on Antennas and Propagation, 45, 1 (Jan. 1997), 11-14.

二级参考文献14

  • 1Schmidt R O. A Signal Subspace Approach To Multiple Emitter Location Spectral Estimation[D]. Stanford, CA: Stanford Univ, 1981.
  • 2Ray R, Kailath T. ESPRIT-estimation of signal paxameters via rotational invariance techniques[J]. IEEE Trans ASSP, 1989,37(7):948-955.
  • 3Viberg M, Otterstem B. Sensor array processing based on subspace fitting[J]. IEEE Trans Signal Processing, 1991,39(5):1110-1121.
  • 4Goldstein J S, Reed I S, Scharf L L. A multistage representation of the wiener filter based on orthogonal projections[J]. IEEE. Trans Information Theory, 1998,44(7):2943-2959.
  • 5Hotening H. Analysis of a complex of statistical variables into principal components[J].J Educ Psychol, 1933,24:417-441;498-520.
  • 6Goldstein J S, Reed I S. Reduced rank adaptive filtering[J]. IEEE Trans Signal Processing, 1997,45:492-496.
  • 7Goldstein J S,Reed I S,P A Zulch. Multistage partially adaptive STAP CFAR detection algorithm [J]. IEEE Tram Aerospace and Electranic Systeras, 1999,35(2):645-661.
  • 8Myrick W L, Goldstein J S, Zoltowski M D. Low complexity anti-jam space-time processing for GPS[A]. IEEE ICASSP[C]. Arlington: IEEE Press,2001.2233-2236.
  • 9Honig M L, Xiao W. Performance of reduced-rank linear interference suppression[J]. IEEE Trans Information Theory, 2001,47(5):1928-1946.
  • 10Witzgall H E, Goldsteln J S. Detection performance of the reduced-rank linear predictor ROCKET [J]. IEEE Trans Signal Processing, 2003,51(7):1731-1738.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部