期刊文献+

基于并行优进策略的差分进化算法 被引量:2

Differential Evolution Based on Parallel Eugenic Strategy
下载PDF
导出
摘要 差分进化算法是一种新颖的进化计算技术,为减少用户选择算法控制参数的盲目性和提高算法收敛速度,设计了一种基于并行优进策略的差分进化算法(DEPES算法).算法随着搜索过程的进行随机动态调整缩放因子和选取差分进化模式;在进行差分操作的并行运算过程中,利用当前代最优个体产生新的试验向量参与竞争选择过程.几个复杂函数的数值实验结果表明,DEPES算法寻优效率高、收敛速度快、对初值具有很强的鲁棒性、对维数具有较好的适应性,尤其是具有避免局部极小的能力,其优化性能优于标准DE算法. Differential evolution(DE) is a new evolutionary computation technology. In order to reduce the difficulty in selecting algorithm parameters and improve convergence, this paper proposed an effective differential evolution based on parallel eugenic strategy ( DEPES). The main principle of DEPES is that parallel eugenic strategy of the new test vector reproduced by the best individual is adopted, and simultaneously, the scale factor and differential strategy adjusted generation by generation at random to avoid the artificial factors. Numerical simulation results on complex functions show that DEPES is effective, efficient, robust to initial conditions and very adaptive to the dimensions, and of excellent ability to avoid being trapped in local minima. Its performances are superior to DE algorithm.
出处 《厦门理工学院学报》 2009年第3期73-78,共6页 Journal of Xiamen University of Technology
关键词 差分进化算法 并行试验向量 优进策略 函数优化 differential evolution parallel eugenic test vector eugenic strategy function optimization
  • 相关文献

参考文献13

  • 1STORN R, PRICE K. Differential Evolution-A simple and efficient heuristic for global optimization over continuous space [J]. Journal of Global Optimization, 1997, 11 (4): 341-359.
  • 2STORN R, PRICE K. Minimizing the real functions of the ICEC'96 contest by differential evolution [ C] //IEEE Int Conf Evol Comp (ICEC'96), Nagoya, Japan, 1996: 842-844.
  • 3STORN R. Designing nonstandard filters with differential evolution [ J ]. IEEE Signal Processing Magazine, 2005, 22(1) : 103-106.
  • 4CHEN C W, CHEN D Z, CAO G Z. An improved differential evolution algorithm in training and encoding prior knowledge into feedforward networks with application in chemistry [ J ]. Chemometrics and InteRigent Laboratory Systems, 2002, 64 (1) : 27-43.
  • 5PATERLINIA S, KRINKB T. Differential evolution and particle swarm optimization in partitional clustering [ J ]. Computational Statistics and Data Analysis, 2006, 50(5) : 1220-1247.
  • 6袁俊刚,孙治国,曲广吉.差异演化算法的数值模拟研究[J].系统仿真学报,2007,19(20):4646-4648. 被引量:27
  • 7DAS S, KONAR A, CHAKRABOBTY U K. Two improved differentinl evolution schemes for faster global search [C] //Proe. GECCO-2005, Washington, D. C., 2005: 991-998.
  • 8颜学峰,余娟,钱锋.自适应变异差分进化算法估计软测量参数[J].控制理论与应用,2006,23(5):744-748. 被引量:24
  • 9郭振宇,程博,叶敏,康龙云,曹秉刚.一种并行混沌差异演化算法[J].西安交通大学学报,2007,41(3):299-302. 被引量:8
  • 10高飞.基于空间收缩的种群灭亡差异演化算法[J].复杂系统与复杂性科学,2004,1(2):87-92. 被引量:12

二级参考文献42

共引文献141

同被引文献31

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部