期刊文献+

Monte Carlo simulation of electron beam air plasma characteristics 被引量:2

Monte Carlo simulation of electron beam air plasma characteristics
下载PDF
导出
摘要 A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4, a model including complete physics processes is established to simulate the passage of the electron beam in air. Based on the model, the characteristics of the electron beam air plasma are calculated. The energy distribution of beam electrons (BEs) indicates that high-energy electrons almost reside in the centre region of the beam, but low-energy electrons always live in the fringe area. The energy deposition is calculated in two cases, i.e., with and without secondary electrons (SEs). Analysis indicates that the energy deposition of SEs accounts for a large part of the total energy deposition. The results of the energy spectrum show that the electrons in the inlet layer of the low-pressure chamber (LPC) are monoenergetic, but the energy spectrum of the electrons in the outlet layer is not pure. The SEs are largely generated at the outlet of the LPC. Moreover, both the energy distribution of BEs and the magnitude of the density of SEs are closely related to the pressure of LPC. Thus, a conclusion is drawn that a low magnitude of LPC pressure is helpful for reducing the energy loss in the LPC and also useful for greatly increasing the secondary electron density in dense air. A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4, a model including complete physics processes is established to simulate the passage of the electron beam in air. Based on the model, the characteristics of the electron beam air plasma are calculated. The energy distribution of beam electrons (BEs) indicates that high-energy electrons almost reside in the centre region of the beam, but low-energy electrons always live in the fringe area. The energy deposition is calculated in two cases, i.e., with and without secondary electrons (SEs). Analysis indicates that the energy deposition of SEs accounts for a large part of the total energy deposition. The results of the energy spectrum show that the electrons in the inlet layer of the low-pressure chamber (LPC) are monoenergetic, but the energy spectrum of the electrons in the outlet layer is not pure. The SEs are largely generated at the outlet of the LPC. Moreover, both the energy distribution of BEs and the magnitude of the density of SEs are closely related to the pressure of LPC. Thus, a conclusion is drawn that a low magnitude of LPC pressure is helpful for reducing the energy loss in the LPC and also useful for greatly increasing the secondary electron density in dense air.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第9期3870-3876,共7页 中国物理B(英文版)
关键词 electron beam DISCHARGE plasma simulation GEANT4 electron beam, discharge, plasma simulation, Geant4
  • 相关文献

参考文献18

  • 1Goossens O, Catlebaut T, Akishev Yu, Napartovich A, Trushkin N and Leys C 2002 IEEE Trans. Plasma Sci. 30 176.
  • 2Naidis G V 1997 J. Phys. D 30 1214.
  • 3Choi J H, Lee T I, Hart I, Baik H K, Song K M, Lim Y S and Lee E S 2006 Plasma Source Sci. Technol. 15 416.
  • 4Deng Y F, Han X W, Rehman S U and Liu Y 2008 Phys. Plasmas 15 053507.
  • 5Song F L, Zhang Y H, Xiang F and Chang A B 2008 Acta Phys. Sin. 57 1807 (in Chinese).
  • 6Adamovich I V, Rich J W, Chernukho A P and Zhdanoke S A 2000 AIAA-Paper 2000-2418.
  • 7Cipollini F and Muylaert J M 2006 AIAA-Paper 2006- 3832.
  • 8Vidmar R J 1990 IEEE Trans. Plasma Sci. 18 733.
  • 9Palm P, Plonjes E, Adamovich I V and Rich J W 2002 AIAA-Paper 2002-0637.
  • 10Li H, Su T, Ou Y L, Wang H H, Bai X Y, Chen Z P and Liu W D 2006 Acta Phys. Sin. 55 3506 (in Chinese).

同被引文献12

  • 1刘春飞,张益坤.电子束焊接技术发展历史、现状及展望(Ⅰ)[J].航天制造技术,2003(1):33-36. 被引量:39
  • 2杨幼桐,杜凯,张菲,宋国利,万鹏程,刘艳春.等离子体的诊断方法[J].哈尔滨学院学报,2005,26(10):132-135. 被引量:6
  • 3蔡竺吟,吕国强,杨蕾,贺兆昌.行波管周期永磁聚焦系统的设计[J].真空电子技术,2006,19(2):25-27. 被引量:11
  • 4Vidmar R J, Seeley M V, Serdyuchenko A, et al. Electrical, RF, and optical diagnostics in E-beam excited air plasma[C]// 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA: AIAA, 2008: 2008-1111.
  • 5Vidmar R J, Kumari D R, Ramsayer C J, et al. Electron-beam- generated air plasma: microwave diagnostics and optical meas- urements[C]//47thAIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, USA: AIAA, 2009: 2009-1049.
  • 6Soloviev V, Konchakov A, Krivtsov V, et al. Simulation of the spatial distribution of air ionization by an electron beam[C]// 32nd AIAA Plasmadynamics and Lasers Conference and 4th Weakly Ionized Gases Workshop. Anaheim, USA: AIAA,2001:2001 -3089.
  • 7Vidmar R J, Stalder K. Air-plasma experimentation at the Uni- versity of Nevada, Reno[C] // 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA: AIAA, 2005: 2005-791.
  • 8Ginzburg V L. The propagation o1: electromagnetic waves in plasma[M]. Oxford, UK: Pergamon Press, 1970: 66 -68.
  • 9毛智勇.电子束焊接技术在大飞机中的应用分析[J].航空制造技术,2009,52(2):92-94. 被引量:24
  • 10栾希亭,邓永锋,谭畅,韩先伟,毛根旺.非均匀磁场约束条件下的电子束空气等离子体特性[J].强激光与粒子束,2010,22(9):2032-2036. 被引量:5

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部