期刊文献+

加入自我延伸过程的融合PCR程序 被引量:3

The Fusion-PCR added Self-Extension Process
下载PDF
导出
摘要 比较了加入自我延伸过程的融合PCR程序与传统PCR在扩增融合基因的扩增效果,自我延伸程序(94℃×1min,52℃×1min,72℃×1min)扩增2次,分别用不同的延伸时间:1min、2min、3min、5min,发现用2min、3min、5min延伸时间扩增出的融合基因条带比传统PCR显著亮一些,而用延伸时间为1min时,两种程序扩增出融合基因条带的亮度相近,说明自我延伸程序中的延伸时间是影响融合基因扩增量的关键因素。加入自我延伸过程的融合PCR扩增程序为:94℃×5min,(94℃×1min,52℃×1min,72℃×5min)×2次循环,(94℃×1min,52℃×1min,72℃×1min)×30次,4℃store。 In this paper, we discussed the fusion-PCR by adding self-extension process. The self-extension procedure was cycled for 2 times. When the extension length of self-extension procedure was 2, 3, or 5 minutes, the fusion-gene band amplified by fusion-PCR was significantly brighter than that of traditional PCR. However, when the extension length of the self-extension was 1 minutes, the genes amplified were similar between these two PCR processes. This indicates that the extension length of self-extension procedure is an im-portant factor influencing gene amplified in Fusion-PCR.
出处 《中国农学通报》 CSCD 北大核心 2009年第18期96-98,共3页 Chinese Agricultural Science Bulletin
基金 河南省科技攻关项目"木聚糖酶热稳定性的全息酶工程定向改造"(072102220001) 江苏省自然科学基金"海栖热袍菌极耐热葡聚糖内切酶分子定向进化"(BK2007067)
关键词 自我延伸过程 融合PCR 延伸时间 融合基因 self extension, fusion PCR, extension length, fusion gene
  • 相关文献

参考文献15

  • 1Xue G, Goblus K, Orpin C. A novel polysaccharide hydrolase cNAD (celD) from Neocallimastix pareiciarum encoding three multi-functional catalytic domains with high endoglucanase, cellobiohydrolase and xylanase activities [J]. J Gen Microbiol,1992, 138:2397-2403.
  • 2Flint H, Martin J, Mcpherson C, et al. A bifunctional enzyme, with separate xylanase and β (1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens [J]. J Bacteriol ,1993, 175:2943-2951.
  • 3颜冰,黄培堂.脑药物转运载体——抗转铁蛋白受体单链抗体的克隆表达及鉴定[J].中国生物化学与分子生物学报,2002,18(3):303-307. 被引量:4
  • 4陆长梅,袁生,赵庆新.用Overlap-PCR法从Trichodermareesei QM9414基因组DNA中克隆并表达木聚糖酶Ⅲ[J].生物工程学报,2004,20(5):764-769. 被引量:7
  • 5Trujillo M, Duncan R, Santi D. Construction of a homodimeric dihydrofolate reductase-thymidylate synthase bifunctional enzyme [J]. Protein Eng ,1997, 10:567-573.
  • 6Hong S, Lee J, Cho K, et al. Assembling a novel bifunctional cellulase-xylanase from Thermotoga maritima by end-to-end fusion [J]. Biotechnol Lett ,2006, 28:1857-1862.
  • 7Lu P, Feng M. Bifunctional enhancement of a beta-glucanase-xylanase fusion enzyme by optimization of peptide linkers [J]. Appl Microbiol Biotechnol,2008, 79:579-587.
  • 8Lu P, Feng M, Li W, et al. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli [J]. FEMS Microbiol Lett , 2006, 261:224-230.
  • 9李相前,邵蔚蓝.海栖热袍菌内切葡聚糖酶Cel12B与木聚糖酶XynA CBD结构域融合基因的构建、表达及融合酶性质分析[J].微生物学报,2006,46(5):726-729. 被引量:20
  • 10Mangala SI, Kittur Fs, Nishimoto M, et al. Fusion of family Ⅵ cellulose binding domains to Bacillus haloduraus xylanase increases its catalytic activity and substrate-binding capacity to insoluble xylan [J]. J Mol Catal B-Enzym, 2003,21:221-230.

二级参考文献24

  • 1Glazer AN,Nikaido H.Microbial Biotechnology.New York:W.H.Freeman and Company,1995.
  • 2Kraulis J,Clore GM,Nilges M,et al.Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei.A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing.Biochemistry,1989,28:7241-7257.
  • 3Chhabra SR,Kelly RM.Biochemical characterization of Thermotoga maritime endoglucanase Cel74 with and without acarbohydrate binding module(CBM).FEBS Letters,2002,531:375-380.
  • 4Din N,Gilkes NR,Tekant B,et al.Non-hydrolytic disruption of cellulosefibers by the binding domain of a bacterial cellulose.Biol Technol,1991,9:1096.
  • 5Nidetzky B,Steiner W,Hayn M,et al.Cellulose hydrolysis by the cellulases from Trichoderma reesei:a new model for synergistic interaction.Biochem J,1994,298:705.
  • 6Huber R,Langworthy TA,Konig H,et al.Thermotogo maritima sp.nov.represents a new genus of unique extremely thermophilic eubacteria growing up 90℃.Arch Microbiol,1986,144:324 -333.
  • 7Winterhalter C,Heinrich P,candussio A,et al.Identification of a novel cellulose-binding domain within the multidomain 120kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritime.Mol Microbio,1995,15:(3)431-444.
  • 8Mangala SL,Kittur FS,Nishimoto M,et al.Fusion of family Ⅵ cellulose binding domain to Bacillus halodurans xynlanase increases its activity and substrate-binding capacity to insoluble xylan.Mol Catalysis,2003,21:221-230.
  • 9Chhabra SR,Shockley KR,Ward DE,et al.Regulation of endoacting glycosyl hydrolases in the hyperthermophilic bacterium Thermotoga maritima grown on glucan-and mannan-based polysaccharides.Appl Environ Microbiol,2002,68:545-554.
  • 10LIU L W,LI X Q,LI X,et al.Computational analysis of responsible dipeptides for optimum pH in G/11 xylanase[J].Biochem Biophys Res Comnmn,2004,321:391-396.

共引文献29

同被引文献44

  • 1杨浩萌,孟昆,罗会颖,王亚茹,袁铁铮,柏映国,姚斌,范云六.通过N端替换提高木聚糖酶的热稳定性[J].生物工程学报,2006,22(1):26-32. 被引量:13
  • 2李相前,邵蔚蓝.海栖热袍菌内切葡聚糖酶Cel12B与木聚糖酶XynA CBD结构域融合基因的构建、表达及融合酶性质分析[J].微生物学报,2006,46(5):726-729. 被引量:20
  • 3Rodriguez-Sanoja R, Oviedo N, Escalante L, et al. A single residue mutation abolishes attachment of the CBM26 starch-binding domain from Lactobacillus amylovorus alpha-amylase. J Ind Microbiol Biotechnol, 2009, 36: 341-346.
  • 4Harhangi H, Freelove A, Ubhayasekera W, et al. CeI6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp. E2 and Piromyces equi. Biochim Biophys Acta, 2003, 1628: 30-39.
  • 5Black GW, Rixon JE, Clarke JH, et al. Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Biochem J, 1996, 319: 515-520.
  • 6Zhao G, Ali E, Araki R, et al. Function of the family-9 and family-22 carbohydrate-binding modules in a modular beta-1,3-1,4-glucanase/xylanase derived from Clostridium stercorarium Xynl0B. Biosci Biotechnol Biochem, 2005, 69: 1562-1567.
  • 7Boraston A, Bolam D, Gilbert H, et al. Carbohydratebinding modules: fine-tuning polysaccharide recognition. Biochem J, 2004, 382: 769-781.
  • 8Simpson P, Xie H, Bolam D, et al. The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. JBiol Chem, 2000, 275:41137-41142.
  • 9Bran E, Johnson P, Creagh A, et al. Structure and binding specificity of the second N-terminal cellulose-binding domain from Cellulomonas fimi endoglucanase C. Biochemistry, 2000, 39: 2445-2458.
  • 10Raghothama S, Simpson P, Szabo L, et al. Solution structure of the CBM10 cellulose binding module from Pseudomonas xylanase A. Biochemistry, 2000, 39: 978-984.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部