期刊文献+

Physical simulations and experimental results of 4H-SiC MESFETs on high purity semi-insulating substrates

Physical simulations and experimental results of 4H-SiC MESFETs on high purity semi-insulating substrates
下载PDF
导出
摘要 In this paper we report on DC and RF simulations and experimental results of 4H-SiC metal semiconductor field effect transistors (MESFETs) on high purity semi-insulating substrates. DC and small-signal measurements are compared with simulations. We design our device process to fabricate n-channel 4H-SiC MESFETs with 100 #m gate periphery. At 30 V drain voltage, the maximum current density is 440 mA/mm and the maximum transconductance is 33 mS/mm. For the continuous wave (CW) at a frequency of 2 GHz, the maximum output power density is measured to be 6.6 W/mm, with a gain of 12 dB and power-added efficiency of 33.7%. The cut-off frequency (fT) and the maximum frequency (fmax) are 9 GHz and 24.9 GHz respectively. The simulation results of fT and fmax are 11.4 GHz and 38.6 GHz respectively. In this paper we report on DC and RF simulations and experimental results of 4H-SiC metal semiconductor field effect transistors (MESFETs) on high purity semi-insulating substrates. DC and small-signal measurements are compared with simulations. We design our device process to fabricate n-channel 4H-SiC MESFETs with 100 #m gate periphery. At 30 V drain voltage, the maximum current density is 440 mA/mm and the maximum transconductance is 33 mS/mm. For the continuous wave (CW) at a frequency of 2 GHz, the maximum output power density is measured to be 6.6 W/mm, with a gain of 12 dB and power-added efficiency of 33.7%. The cut-off frequency (fT) and the maximum frequency (fmax) are 9 GHz and 24.9 GHz respectively. The simulation results of fT and fmax are 11.4 GHz and 38.6 GHz respectively.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4474-4478,共5页 中国物理B(英文版)
关键词 4H-SIC MESFET SIMULATION MICROWAVE 4H-SiC, MESFET, simulation, microwave
  • 相关文献

参考文献10

  • 1Sudow M, Andersson K, Billstrom N, Grahn J, Hielmgren H, Nilsson J, Nilsson P A, Stahl J, Zirath H and Rorsman N 2006 IEEE Trans. Microwave Theory and Techniques 54 4072.
  • 2Andersson K, Siidow M, Nilsson P, Sveinbjornsson E, Hjelmgren E, Nilsson J, Stahl J, Zirath H and Rorsman N 2006 IEEE Electron Device Letter 27 573.
  • 3Lu H L, Zhang Y M, Zhang Y M and Che Y 2008 Chin. Phys. B 17 1410.
  • 4Cao Q J, Zhang Y M, Lu H L, Wang Y H, Chang Y C and Tang X Y 2007 Chin. Phys. 16 1097.
  • 5Eriksson J, Rorsman N, Zirath H, Jonsson R, Wahab Q and Rudner S 1999 Thin Solid Films 343-344 637.
  • 6Lee S K, Zetterling C M, Ostling M, Palmquist J P and Jansson U 2002 Microelectronic Engineering 60 261.
  • 7Eriksson J, Rorsman N, Zirath H, Jonsson R, Wahab Q and Rudner S 2001 Materials Science Forum 353-356 699.
  • 8Hjelmgren H, Andersson K, Eriksson J, Nilsson P A, Sudow M and Rorsman N 2007 Solid-State Electronics 51 1144-1152.
  • 9Bertilsson K and Nilsson H E 2004 Solid-State Electronics 48 1721.
  • 10Yang L, Zhang Y M and Yu C L 2005 Solid-State Electronics 49 517.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部