期刊文献+

一株抗G^-菌和酵母菌的乳酸乳球菌的分离鉴定与抗菌活性 被引量:2

Identification and Characterization of a Lactococcus lactis Strain with the Distinctive Antimicrobial Activity Against Gram-negative Bacteria and a Yeast
原文传递
导出
摘要 以G+菌金黄色葡萄球菌(Staphylococcus aureus)作为指示菌,通过抑菌筛选法从生牛奶中初筛得到具有抑菌活性的14株细菌菌株,然后通过个体形态与培养特征观测、部分生理生化反应、G+C mol%测定、16S rDNA序列比对分析、PCR扩增特异性N-乙酰胞壁酸水解酶基因和序列对比分析等鉴定,确定其中的一株具有较高抑菌活性的分离株为乳酸乳球菌乳酸亚种(Lactococcus lactis subsp.lactis)菌株,命名为MB191。对多种G+细菌、G-细菌、酵母菌和丝状真菌的对峙培养抗性测定结果表明,MB191除对供试G+细菌具有较高的抑菌活性以外,还对丁香假单胞菌(Pseudomonas syringae)、荧光假单胞菌(P.fluorescens)等G-细菌和汉逊德巴利酵母(Debaryomyces hansenii)等具有明显的抑菌活性。乳酸乳球菌的这一特性目前尚未见文献报道。 Using the Gram-positive Staphylococcus aureus as the indictor bacterium, fourteen antibacterial strains were initially obtained by the bilayer-media screening method from the raw milk samples, and one isolate was found to exhibit the higher antibacterial activity against the indicator. This isolate was further studied on its individual and cultural morphology features, partial physiological and biochemical reaction activities, G+C content, the sequence features of the 16S rDNA and the species-specific N-acetylmuraminidase gene (acmA), consequently, it was identified as the Lactococcus lactis subsp, lactis strain, named as MB 191. An evaluation of the antimicrobial spectra of MB 191 was subsequently performed, it showed the remarkable activities against not only the tested Gram-positive bacteria, but also several Gram-negative bacteria including Pseudomonas syringae and R fluorescens, as well as the yeast Debaryomyces hansenii, which was a distinctive feature that was not reported prior to this study.
出处 《微生物学通报》 CAS CSCD 北大核心 2009年第9期1356-1362,共7页 Microbiology China
基金 国家自然科学基金(No.30670054 30370026)
关键词 乳酸乳球菌 鉴定 抑菌活性 革兰氏阴性菌 酵母菌 Lactococcus lactis, Identification, antibacterial activity, Gram-negative bacteria, Yeast
  • 相关文献

参考文献18

  • 1Morello E, Bermudez-Humaran LG, Llull D, et al. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol, 2008, 14: 48-58.
  • 2Bierbaum G, Sahl HG. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol, 2009, 10: 2-18.
  • 3Cheigh CI, Pyun YR. Nisin biosynthesis and its properties. Biotechnol Lett, 2005, 27: 1641-1648.
  • 4Mathur S, Singh R. Anticiotic resistance in food lactic acid bacteria - a review. Int J Food Microbiol, 2005, 105: 281-295.
  • 5Lubelskia J, Rinkb R, Khusainova R, et al. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci, 2008, 65: 455-476.
  • 6Siragusa S, Di Cagno R, Ercolini D, et al. Taxonomic structure and monitoring of the dominant population of lactic acid bacteria during wheat flour sourdough type Ⅰ propagation using Lactobacillus sanfranciscensis starters. Appl Environ Microbiol, 2009, 75: 1099-1109.
  • 7Drouault S, Corthier G, Ehrlich SD, et al. Survival, physiology, and lysis of Lactococcus lactis in the digestive tract.Appl Environ Microbiol, 1999, 65(11): 4881-4886.
  • 8Buist G, Kok J, Leenhouts KJ, et al. Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muranmidase needed for cell separation. J Bacteriol, 1995, 177(6): 1554-1563.
  • 9Garde S, Babin M, Gaya P, et al. PCR amplification of the gene acmA differentiates Lactococcus lactis subsp, lactis and L. lactis subsp, cremoris. Appl Environ Microbiol, 1999, 65(11): 5151-5153.
  • 10Ausubel FM, Brent R, Kingston RE, et al. Current protocols in molecular biology. John Wiley & Sons, Inc., 1997, pp.2.4.1-2.4.5.

二级参考文献26

  • 1陈秀珠,何松,龙力红,还连栋,薛禹谷.乳酸乳酸球菌AL2产生的乳链菌肽的提纯和性质[J].微生物学报,1996,36(4):269-275. 被引量:21
  • 2Buist G, Karsens H, Nauta A, et al. Autolysis of Lactococcus lactis caused by induced overproduction of its major autolysin, AcmA. Appl Environ Microbiol, 1997, 63(7): 2722-2728.
  • 3Buist G, Kok J, Leenhouts KJ, et al. Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J Bacteriol, 1995, 177: 1554-1563.
  • 4Leenhouts K, Buist G, Kok J. Anchoring of proteins to lactic acid bacteria. Antonie van Leeuwenhoek, 1999, 76: 367-376.
  • 5Ramasamy R, Yasawardena S, Zomer A, et al. Immunogenicity of a malaria parasite antigen displayed by Lactococcus lactis in oral immunisations. Vaccine, 2006, 24: 3900-3908.
  • 6Tarahomjoo S, Katakura Y, Satoh E, et al. Bidirectional cell-surface anchoring function of C-terminal repeat region of peptidoglycan hydrolase of Lactococcus lactis IL1403. J Biosci Bioeng, 2008, 105: 116-121.
  • 7van Roosmalen ML, Kanninga R, E1 Khattabi M, et al. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria. Methods, 2006, 38: 144-149.
  • 8Okano K, Zhang Q, Kimura S, et al. System using tandem repeats of the cA peptidoglycan-binding domain from Lactococcus lactis for display of both N- and C-terminal fusions on cell surfaces of lactic acid bacteria. Appl Environ Microbiol, 2008, 74: 1117-1123.
  • 9Raha AR, Varma NR, Yusoff K, et al. Cell surface display system for Lactococcus lactis: a novel development for oral vaccine. Appl Microbiol Biotechnol, 2005, 68: 75-81.
  • 10Heinemann U, Ay J, Gaiser O, et al. Enzymology and folding of natural and engineered bacterial beta- glucanases studied by X-ray crystallography. Biol Chem, 1996, 377: 447-454.

共引文献16

同被引文献34

  • 1林庆斌,廖升荣,熊亚红,乐学义.超氧化物歧化酶(SOD)的研究和应用进展[J].化学世界,2006,47(6):378-381. 被引量:78
  • 2Buist G, Karsens H, Nauta A, et al. Autolysis of Lactococcus lactis caused by induced overproduction of its major autolysin, AcmA. Appl Environ Microbiol, 1997, 63(7): 2722-2728.
  • 3Buist G, Kok J, Leenhouts KJ, et al. Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J Bacteriol, 1995, 177(6): 1554-1563.
  • 4Huard C, Miranda G, Redko Y, et al. Analysis of the peptidoglycan hydrolase complement of Lactococcus lactis: identification of a third N-acetylglucosaminidase, AcmC. Appl Environ Microbiol, 2004, 70(6): 3493-3499.
  • 5Steen A, Buist G, Horsburgh GJ, et al. AcmA of Lactococcus lactis is an N-acetylglucosaminidase with an optimal number of LysM domains for proper functioning. FEBSJ, 2005, 272(11): 2854-2868.
  • 6Raha AR, Varma NR, Yusoff K, et al. Cell surface display system for Lactococcus lactis: a novel development for oral vaccine. Appl Microbiol Biotechnol, 2005, 68(1 ): 75-81.
  • 7Okano K, Zhang Q, Kimura S, et al. System using tandem repeats of the cA peptidoglycan-binding domain from Lactococcus lactis for display of both N- and C-terminal fusions on cell surfaces of lactic acid bacteria. Appl Environ Microbiol, 2008, 74(4): 1117-1123.
  • 8Shao X, Jiang M, Yu Z, et al. Surface display of heterologous proteins in Bacillus thuringiensis using a peptidoglycan hydrolase anchor. Microbial Cell Factories, 2009, 8(1): 48.
  • 9Valdivia A, Perez-Alvarez S, Aroca-Aguilar JD, et al. Superoxide dismutases: a physiopharmacological update. J Physiol Biochem, 2009, 65(2): 195-208.
  • 10Johnson F, Giulivi C. Superoxide dismutases and their impact upon human health. Mol Aspects Med, 2005, 26(4/5): 340-352.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部