期刊文献+

|x|在(-∞,+∞)的有理逼近 被引量:2

Rational Interpolation to |x| in(-∞,+∞)
下载PDF
导出
摘要 本文研究|x|落在区间[-1,1]外的外推法.将区间由原来的[-1,1]扩展到(-∞,+∞),即将有限的区间扩展到无限的区间.研究rn(X;x)在(-∞,+∞)上对|x|内闭一致收敛性和在整个数轴上发散的性质,以及rn(X;x)本身在(-∞,+∞)上的一些简单的性质. In this paper,we investigate |x| extrapolated method of [ - 1,1 ], [ - 1,1 ] extended x ∈ ( -∞,+∞ ). This is finite intervoat extended infinite interval. We investigate the uniformly convergence of rn(X;x) to |x| in (-∞,+∞ ), the divergence of rn(X;x) to |x| on the whole real line and some simple properties of rn(X;x) on ( -∞,+∞).
出处 《山西师范大学学报(自然科学版)》 2009年第3期27-31,共5页 Journal of Shanxi Normal University(Natural Science Edition)
关键词 有理逼近 Newman型有理函数 Newman型插值 内闭一致收敛性 外推法 rational approximation Newman-type interpolation Newman-type rational function inner close uniformly canvergenee extrapolation method
  • 相关文献

参考文献7

二级参考文献24

  • 1[1]NEWMAN D J. Rational approximation to |x| [J]. Michigan Math J, 1964(11):11-14.
  • 2[2]XIE T F, ZHOU S P. Approximation theory of real function[M]. Hangzhou Univ Press, Hangzhou, China,1998.
  • 3[3]XIE T F, ZHOU S P. The asgmptotic property of approximation to |x| by Newman rational operators [J]. Acta Math Hungar, 2004(103,4) :313-319.
  • 4[4]BALAZS K, KILGORE. Discussion on simultaneous approximalion of derivatives by Lagrcunge interpolation[J].Numer Functo Optim, 1990(11) :225-237.
  • 5[5]PETRUSHEV P P, POPOV V A. Rational approximation of real functions[M]. Cambridge Univ,Press,Cambridge,1987.
  • 6BERNSTEIN S N. Sur la meilleureapproximation de |x|par des polynomes de degrés donnés[J]. Acta. Math.,1913, 37: 1-57.
  • 7BRUTEMAN L. On rational interpolation to |x| at the adjusted Chebyshev nodes [J].J.Approx. Theory, 1998, 95: 146-152.
  • 8BRUTEMAN L, PASSOW E. Rational interpolation to |x| at the Chebyshev nodes [J].Bull.Austral. Math. Soc., 1997, 56: 81-86.
  • 9NEWMAN D. Rational approximation to |x| [J]. Michigan Math. J., 1964, 11: 11-14.
  • 10WERNER H. Rationale Interpolation von |x| in aquidistanten Punkten [J]. Math. Z.,1982,180: 11-17.

共引文献21

同被引文献16

  • 1张慧明,李文汉,李令斗.|x|的有理逼近[J].山西师范大学学报(自然科学版),2006,20(2):10-13. 被引量:2
  • 2谢庭藩.Newman有理插值算子的一个扩充[J].中国计量学院学报,2004,15(3):242-245. 被引量:3
  • 3胡雯.关于对│x│有理插值逼近的收敛性[J].温州师范学院学报,2005,26(2):24-30. 被引量:2
  • 4田漪,蒋艳杰.对|x|的有理逼近分析[J].河北师范大学学报(自然科学版),2007,31(1):21-23. 被引量:2
  • 5Bernstein S N. Sur la meilleure approximation de |x| pardes polynomes de degres donnes[J]. Acta Math, 1913,37:1-57.
  • 6Newman D J. Rational approximation to |x|[J]. Mich Math J, 1964,11 : 11-14.
  • 7Vjacheslavov N S. On the uniform approximation of |x| by rational functions[J]. Soviet Math Dokl,1975(16) :100-104.
  • 8Ilive G I, Opits U. Comonotone approximation of |x| by rational functions[J]. Serdica Bulgar Math Publ, 1984,10 (1): 88-105.
  • 9Brutman L , Passow E. On rational interpolation to |x|[J]. Constr Approx,1997(13):381-391.
  • 10Werner H. Rational interpolation yon |x| in aquidistanten punkten[J]. Math Z,1982,180:85-118.

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部