期刊文献+

带有共享缓冲的门限网络系统仿真与分析

Simulation and Analysis of Network System With Buffer Sharing Area
下载PDF
导出
摘要 在网络通信中,如何合理分配网络资源、减少信元损失和通信阻塞具有重要意义。针对这一问题,提出一种带有共享缓冲的门限网络系统。利用排队理论,建立了服务系统的数学模型。对数学模型进行简化,并根据离散事件动态系统的原理和方法进行了计算机仿真。仿真结果表明:在共享缓冲区为定值的情况下,适当调整其中一类顾客的缓存大小,可使系统总的顾客损失率到达最小;两类顾客缓存均一定的情况下,增加共享缓冲区可减少系统总的顾客损失率。为决策者控制决策提供了重要的参考信息。 In network communication, it is important to allocate reasonably the network resources, to reduce the cell loss ratio and the channel burden. For this problem, a kind of network system with buffer sharing area was proposed. According to the queuing theory, a mathematic model was established for this system. The model was simplified and simulated in computer based on the principle of discrete event dynamic system. The simulation results were as follows : when the buffer of one kind of customer was adjusted properly, the total customer loss ratio could be minimized on condition that the buffer sharing area was set constant; increasing the buffer sharing area could reduce the total customer loss ratio when the buffers of two kinds of customers were set constant respectively. This supplied meaningful reference information for policy maker and controller.
机构地区 梧州学院数理系
出处 《计算机仿真》 CSCD 北大核心 2009年第9期96-99,119,共5页 Computer Simulation
关键词 通信 有限排队 仿真 共享缓冲 Telecommunication Finite queue Simulation Buffer sharing
  • 相关文献

参考文献11

  • 1M Jeffrey, D Lawrence, Burns Alden. General Motors Increases Its Production Throughput [ J ]. In : Interface , January - February 2006, 36 (1) :6 - 25.
  • 2Shin - pin Chen. An mathematical programming of fuzzy tandem Queues[J]. In: International journal of Uncertainty, 2005, 13 (4) :425-436.
  • 3W E Leland, et al. On the Self - similar Nature of Ethernet Traffic [C]. In :Proceedings of ACM/SIGCOMM, 1993. 183-193.
  • 4饶云华,邹雪城.自相似排队系统的蒙特卡罗仿真研究[J].计算机工程与应用,2004,40(6):30-33. 被引量:2
  • 5Ronnritke, Xiaoyanhong and Mariogerla. Contradictory relationship between Burst parameter and queueing performance ( extended version) [J]. Telecommunication Systems, 2001. 159 - 175.
  • 6Mischa Schwartz. Broadband Integrated Network [ M ]. Prentice Hall PTR, 1996.
  • 7Rusty O Baldwin, Nathaniel J Davis IV, John E Kobza and Scott F Midkiff. Real - time queueing theory : Atutorial presentation with an admission control application[ C ]. In : Queueing System, 2000. 1-21.
  • 8马丙鹏,曹炬,杨树堂,余胜生.排队理论在视频会议中的应用[J].计算机工程与应用,2003,39(16):212-214. 被引量:4
  • 9周卫华,倪县乐,丁炜.基于端到端时延保证的紧急分组优先算法[J].重庆邮电学院学报(自然科学版),2004,16(1):10-14. 被引量:3
  • 10柯婷.基于MATLAB程序的GI/GI/c/K/∞系统的建模与仿真[J].沈阳理工大学学报,2007,26(1):87-90. 被引量:2

二级参考文献17

  • 1华兴.排队论与随机服务系统[M].上海:上海翻译出版社,1987.137.
  • 2Pulse code modulation(PCM)of voice frequencies[S].CCITT(ITU—T) Rec G 711,1988—11.
  • 3Shutang Yang.Muhipoint Communications with Speech Mixing over IP Network.
  • 4MCKEOWN N. Scheduling algorithms for input-queued cell switches[D]. Ph.D. dissertation, Univ. California, Berkeley. CA. May 1995.
  • 5ANDERSON T. High speed switch scheduling for local area network[J]. ACM Trans on Computer Systems.1993,(5):319-352.
  • 6LAMAIRE R.O, SERPANOS D N. Two-dimensional round-robin schedulers for packet switches with multiple input queues[J]. IEEE/ACM Transactions on Networking, 1994,2(5):471-482.
  • 7CHEN T,WALRAND J, MESSERSCHMITT D. Dynamic priority protocols for packet voice[J]. IEEE Journal on Selected Areas in Communications,1989, 7(5):632-643.
  • 8CLARK D,SHENKER S,ZHANG L. Supporting real-time applications in an integrated services packet network: Architecture and mechanism[C]. In Proceedings of ACM SIGCOMM'92, 1992, Baltimore, Maryland,14-26.
  • 9ANDREWS M. Probabilistic end-to-end delay bounds for earliest deadline first scheduling[C]. In Proceedings of IEEE INFOCOM 2000, Tel Aviv, Israel, 2000.
  • 10ANDREWS M,ZHANG L. Minimizing end-to-end delay in high-speed networks with a simple coordinated schedule[C]. In Proceedings of IEEE INFOCOM '99, New York, NY, 1999.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部