期刊文献+

贝叶斯网参数学习中连续变量离散化方法研究 被引量:8

A Discretization Method of Continuous Variable in Bayesian Network Parameter Learning
下载PDF
导出
摘要 连续变量离散化是贝叶斯网络参数学习中面临的一个重要问题,它的好坏将直接影响到贝叶斯网络的推理效果。目前缺少一种有效的手段用于评价连续变量离散化的好坏,通过研究,提出了推理信息量的概念,并采用作为衡量连续变量离散化好坏的标准。在连续变量离散化的过程中,采用遗传算法通过迭代的方式寻求最优解,其中,推理信息量作为衡量个体适应度的标准。实例分析证明,推理信息量大的推理效果好要优于推理信息量小的推理效果。 Discretization of continuous variable is a very important problem in Bayesian network parameter learning,and it affects the effectiveness of Bayesian network reasoning directly. There is a lack of standard used to evaluate discretization of continuous variable at present, therefore a notion of reasoning information is presented here by study ,which is used as the measure standard of diseretization . According to the simple Bayesian network, a diseretization model is built, and the optimal solution is found by GA , and in this process , reasoning information is used as the function of individual fitness degree . Example analysis proved that using greater amout of reasoning information can obtain better reasoning effect than using less reasoning information.
出处 《计算机仿真》 CSCD 北大核心 2009年第9期136-139,260,共5页 Computer Simulation
关键词 参数学习 推理信息量 离散化方法 遗传算法 Parameter learning Reasoning information Discretization method Genetic algorithms
  • 相关文献

参考文献3

二级参考文献24

  • 1屈微,刘贺平,张海军.基于KL散度的支持向量机方法及应用研究[J].信息与控制,2005,34(5):627-630. 被引量:2
  • 2胡日勒,宗成庆,徐波.基于统计学习的机器翻译模板自动获取方法[J].中文信息学报,2005,19(6):1-6. 被引量:6
  • 3[1]Bouckaert R R. Belief Networks Construction Using the Minimum Description Length Principle. Lecture Notes in Computer Science, 1993,747:41~48
  • 4[2]Lam W, Bacchus F. Learning Bayesian Belief Networks: An Approach Based on the MDL Principle. Computational Intelligence, 1994(10):269~293
  • 5[3]Cooper G, Herskovits E. A Bayesian Method for the Induction of Bayesian Networks from Data. Machine Learning, 1992(9):309~347
  • 6[4]Singh M, Valtorta M. Construction of Bayesian Network Structures from Data: A Brief Survey and an Efficient Algorithm. International Journal of Approximate Reasoning,1995(12):111~131
  • 7[5]Chickering D M. Learning Equivalence Classes of Bayesian Network Structures. Journal of Machine Learning Research, 2002(2):445~498
  • 8[6]Pan H P, Liu L. Fuzzy Bayesian Networks-a General Formalism for Representation, Inference and Learn-ing with Hybrid Bayesian Networks. International Journal of Pattern Recognition and Artificial Intelligence, 2000,14(7):941~962
  • 9[7]Heckerman D, Geiger D, Chickering D. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Machine Learning, 1995,20(2):197~243
  • 10[8]Herskovits E. Computer-based Probabilistic Networks Construction:[Ph. D Dissertation]. California:Stanford University,1991

共引文献28

同被引文献73

引证文献8

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部