期刊文献+

基于人工免疫的烟草异物图像多阈值分割 被引量:3

Tobacco and Foreign Material Image Segmentation Based on Artificial Immune Algorithm
下载PDF
导出
摘要 烟草异物图像分割是图像异物识别的基本任务。为了快速实现烟草异物图像多阈值分割,提出了一种基于人工免疫算法与最大类间方差法的多阈值烟草异物图像自动分割方法。算法首先定义了图像分割目标函数;接着运用人工免疫算法,结合最大类间方差法以及目标函数对图像进行自动分割,并产生最优的多阈值,从而实现图像的多阈值分割。人工免疫算法中,抗原是指最优图像分割目标函数,而抗体是指最优的多阈值。实验证明,方法对烟草异物图像多阈值分割的效果良好,分类清晰。 Tobacco and foreign material image segmentation is one of the most important jobs in tobacco and foreign material recognition. In order to realize the multi - threshold segmentation of tobacco and foreign material image, an automatic image segmentation method based on AIA( artificial immune algorithm) and maximum between - cluster variance(Otsu) is presented in this paper. First, the objective function for the image segmentation is presented. Then, an artificial immune approach is presented to generate automatically segmentation thresholds. In this approach, the objective function is regarded as antigens, and the segmentation thresholds are regarded as antibodies. Experiments demonstrate the good performance of the proposed method.
出处 《计算机仿真》 CSCD 北大核心 2009年第9期190-193,300,共5页 Computer Simulation
关键词 人工免疫算法 图像分割 烟草 异物 最大类间方差法 图像识别 ArtificiaL immune algorithm Image segmentation Tobacco Foreign material Maximum between -cluster variance(Otsu) Image recognition
  • 相关文献

参考文献9

二级参考文献49

共引文献199

同被引文献95

引证文献3

二级引证文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部