期刊文献+

聚类算法分析及在GIS中心选址中的仿真研究 被引量:7

Analysis of Clustering Algorithm and Its Simulation in GIS Location
下载PDF
导出
摘要 通过对聚类算法初始点选择策略的分析和比较,经典k-means算法在GIS海量数据处理上的效率问题,提出了随机采样的k-means算法来进行坐标聚类;并将随机采样k-means算法应用于GIS中心选址,充分利用GIS数据分析和处理能力,以城市间的欧几里得距离为相似条件,采用最大最小原则选取初始点进行聚类,从而缓解局部最优解产生的概率;选取中心城市作为目标对象,从而提高商业决策的充分性和可靠性;经仿真结果验证了所提出的随机取样k-means算法的有效性和正确率。 The limitation of classical k - means method is addressed in dealing with massive GIS data set through analyzing the several initialization strategies of algorithm. So a Sampling - Randomly k - means algorithm is presented to solve the clustering of GIS spatial data. Furthermore, the proposed algorithm is used to study the problem of the GIS centre location, and make decision - making for business more reliable. It can classify the world' s main cities and select the centroid city based on the Euclidean distance between two cities. And using the MaxMin Algorithm to select the initial points of k - means can reduce the probability of local optimization. Finally, the simulation results are given to demonstrate the effectiveness and correctness of the proposed algorithm.
出处 《计算机仿真》 CSCD 北大核心 2009年第9期256-260,共5页 Computer Simulation
基金 国家杰出青年科学基金资助(60525304) 浙江省科技攻关重点项目(2008C23040)
关键词 选址 地理信息系统 坐标聚类 随机采样 Location GIS Coordinate clustering Sampling randomly
  • 相关文献

参考文献14

  • 1S L Hakimi. Optimum locations of switching centers and the absolute centers and medians of a graph [ J ]. Operations Research, 1964, 12(3) :450 -459.
  • 2Ya-xiang Yuan (State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing Chinese Academy of Sciences, Beijing 100080, China).A SCALED CENTRAL PATH FOR LINEAR PROGRAMMING[J].Journal of Computational Mathematics,2001,19(1):35-40. 被引量:14
  • 3G Z Konstantinos, N A Konstantinos. A heuristic algorithm for solving hazardous materials distribution problems[J]. European Journal of Operational Research, 2004,152 : 507 - 519.
  • 4张潜,高立群,刘雪梅,胡祥培.定位-运输路线安排问题的两阶段启发式算法[J].控制与决策,2004,19(7):773-777. 被引量:44
  • 5毛国君,段立娟,王实,等.数据挖掘原理与算法[M].北京:清华大学出版社,2006:183.
  • 6J B MacQueen. Some Methods for classification and Analysis of Multivariate Observations [ C ]. Proceedings of 5 - th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1967, 1 : 281 - 297.
  • 7孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1079
  • 8钱卫宁,周傲英.从多角度分析现有聚类算法(英文)[J].软件学报,2002,13(8):1382-1394. 被引量:86
  • 9袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:154
  • 10R O Duda, P E Hart. Pattern Classification and Scene Analysis [ M]. John Wiley and Sons. NY, 1973.

二级参考文献73

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Hatzivassiloglou V, Klavans J L, Holcombe M L, et al.Simfinder: A flexible clustering tool for surmnarization. In: Proceedings of the NAACI, 2001 Workshop on Automatic Surrunarization, Pittsburgh, PA, 2001, 41-49 .
  • 3Jain A K,Dubes R C. Algorithms for clustering data. Englewood Cliffs NJ, USA: Prentice Hall, 1988.
  • 4Sneath P H, Sokal R R. Numerical Taxonomy. London, UK:Freeman. 1973.
  • 5King B. Step-wise clustering procedures. Journal of the Amercian Statistical Association , 1967, 69(8) :86-101.
  • 6Guha S, Rastogi R, Shim K. CURE: An efficient clustering algorithm for large databases. Information Systems, 2001, 26( 1 ) : 35-58.
  • 7Guha S, Rastogi R, Shim K. ROCK: a robust clustering algorithm for categorical attributes. In : Proceedings of the 15th International Cotfference on Data Engineering. Sydney: IEEE Computer Society Press, 1999. 512-521.
  • 8Karypis G, Han E H, Kumar V. Chameleon: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer, 1999, 32(8) :68-75.
  • 9Han E H, Karypis G,Kumar V, et al. Clustering based on association rule hypergraphs. In: 1997 SIG-MOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Tucson, Arizona, USA, 1997. 9-13.
  • 10MacQueen J B. Some methods for classification and analysis of multivariate observations. In : Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley: University of California Press, 1967. 281-297.

共引文献1376

同被引文献43

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部