期刊文献+

基于经验模态分解的小波阈值降噪方法研究 被引量:19

A Wavelet Threshold De-noising Algorithm Based on Empirical Mode Decomposition
下载PDF
导出
摘要 针对小波阈值降噪方法中小波基和阈值缺乏选取依据的缺陷,提出了一种基于经验模态分解(EMD)的小波阈值降噪方法。首先将带噪信号进行EMD分解得到一系列本征模态分量(IMF),仅对带噪的高频IMF分量进行小波阈值降噪处理,将处理结果与不含噪声的低频IMF分量进行信号还原得到降噪后信号。方法有效避免了直接小波阈值降噪高频分量损失的问题,同时还可直接去除信号中可能存在的趋势项,比直接小波阈值降噪具有更好的效果。仿真数据处理证明了方法的有效性。 Wavelet base and threshold have no theoretical basis for choosing wavelet threshold de - noising. A new method based on empirical mode decomposition (EMD) is proposed. At first, noisy signal is decomposed to several intrinsic mode functions (IMF). Secondly, wavelet threshold de -noising only acts on the high frequency IMF which contain noise, the results and the low frequency IMF can reconstructed to obtain the denoised signal. This method avoids the high frequency information lost during the de - nosing process, meanwhile it can eliminate the tendency part that might exist in the signal. The simulation results show that wavelet threshold de - noising based on EMD has advantage over the traditional wavelet threshold de - noising methods.
机构地区 大连
出处 《计算机仿真》 CSCD 北大核心 2009年第9期325-328,337,共5页 Computer Simulation
关键词 经验模态分解 降噪 本征模态分量 趋势项 Empirical mode decomposition(EMD) De -nosing Intrinsic mode function Tendency part
  • 相关文献

参考文献6

二级参考文献20

  • 1秦前清 杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1998..
  • 2Stephane Mallat 杨力华译.信号处理的小波导引[M].北京:机械工业出版社,2004..
  • 3Coifman R R, Donoho D L. Translation Invariant Denoising [ M ] .Tech. Rep, Dept. Statistics, Stanford Univ. 1995. to be Published in Wavelets and Statistics,A. Antoniadis, Ed. Berlih, Germany: Springer Verlag.
  • 4Xiao-ping Zhang, Desai M D. Adaptive Denoising Based onS URE Risk [J]. IEEE Signal Processing Lerrers, 1998, 5:265 -267.
  • 5Donoho D L. De -noising by Soft -thresholding [J] .IEEE Trans Inform Theory, 1995, 41: 613 -627.
  • 6Donoho D L, Johnstone I M. Adapting to Unknown Smoothness Via Wavelet Shrinkage [J] .Journal of American Stat Assoc, 1995, 90: 1 200-1 224.
  • 7Coifman R R, Donoho D L. Translation Invariant Denoising [ M ] .Tech Rep, Dept Statistics, Stanford Univ. 1995, to be Published in Wavelets and Statistics, A Antoniadis, Ed. Berlih, Germany: Springer Verlag.
  • 8Xiao-ping Zhang, Desai M D. Adaptive Denoising Based on SURE Risk [J]. IEEE Signal Processing Lerrers, 1998, 5:265 -267.
  • 9Donoho D L. De -noising by Soft -thresholding [J] .IEEE. Trans Inform Theory, 1995, 41: 613 -627.
  • 10Donoho D L, Johnstone I M. Adapting to Unknown Smoothness Via Wavelet Shrinkage [J] .Journal of American Stat. Assoc, 1995, 90.- 1 200-1 224.

共引文献178

同被引文献213

引证文献19

二级引证文献208

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部