1Kashiwara M. On crystal bases of the q-analogue of universal enveloping algebras. Duke Math J, 63: 465-516 (1991).
2Lusztig G. Canonical bases arising from quantized enveloping algebras. J Amer Math Soc, 3:447-498 (1990).
3Kashiwara M, Nakashima T. Crystal graphs for representations of the q-analogue of classical Lie algebras. J Algebra, 165:295-345 (1994).
4Hong J, Kang S J. Introduction to Quantum Groups and Crystal Bases. In: Graduate Studies in Mathe- matics, Vol. 42. Providence, RI: Amer Math Soc, 2002.
5Kang S J, Misra K C. Crystal bases and tensor product decompositions of Uq(G2)-modules. J Algebra, 163:675-691 (1994).
6Nakashima T. Crystal base and a generalization of the Littlewood-Richardson rule for classical Lie algebras. Commun Math Phys, 154:215-243 (1993).
7Zou Y M. Integrable representations of Uq(osp(1|2n)). J Pure Appl Algebra, 130:99-112 (1998).
8Musson I M, Zou Y M. Crystal bases for Uq(osp(1, 2r)). J Algebra, 210:514-534 (1998).
9Benkart G, Lee S C, Ram A. Tensor product representations for orthosymplectic Lie superalgebras. J Pure Appl Algebra, 130:1-48 (1998).
10Lee S C. Representations for Lie superalgebra spo(2m, 1). J Korean Math Soc, 36(3): 593-607 (1999).