期刊文献+

Hilbert空间中闭的拟非扩张映像不动点的另一迭代算法 被引量:7

Another Iterative Algorithm on Fixed Points for Closed and Quasi-nonexpansive Mappings in Hilbert Spaces
下载PDF
导出
摘要 首次引入了一种迭代算法,用以构造Hilbert空间中闭的拟非扩张映像的不动点.使用新的算法证明了一个强收敛定理.新算法不要求映像具有次闭性质,而且对迭代参数{αn}的限制更宽松. A modified hybrid projection is introduced for constructing fixed points of closed and qasi-nonexpansive mappings in Hilbert spaces. With the modified iterative algorithm, a strong convergence theorem is proved. The new algorithm lies in the facts that the strong convergence result is established without making use of demi-closedness property for mapping T and the restriction on the parameter { an } is more relaxed.
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2009年第5期579-581,592,共4页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(10771050)
关键词 闭拟非扩张映像 修正的杂交投影算法 HILBERT空间 强收敛 closed and quasi-nonexpansive mapping modified hybrid projection algorithm Hilbert space strong convergence
  • 相关文献

参考文献6

  • 1ALBER Y I. Metric and Generalizd Projection Operators in Banach Spaces:Properties and Applications [ A]. KARTSATOS A G. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type [C]. New York: Marcel Dekker, 1996 : 15- 50.
  • 2ALBER Y I ,REICH S. An Iterative Method for Solving a Class of Nonlinear Operator Equations in Banaeh Spaces [J]. Pan Amer Math J ,1994,4(3) :39-54.
  • 3BAUSCHKE H H, COMBETTES P L. A Weak-to-strong Convergence Principle for Fej6r-monotone Methods in Hilbert Spaces [J]. Math Oper Rese,2001,26(3) :248-264.
  • 4CHANG S S, CHO Y J, ZHOU Hai-yun. Iterative Methods for Nonlinear Operator Equations in Banach Spaces [ M], New York: Nova Science Publishers, 2002.
  • 5NAKAJO K, TAKAHASHI W. Strong Convergence Theorems for Nonexpansive Mappings and Nonexpansive Semigroups [ J ]. J Math Anal Appl,2003,279(6) :372-379.
  • 6TAKAHASHI W. Nonlinear Functional Analysis [M]. Yokohama: Yokohama Publishers,2000.

同被引文献42

  • 1陈永林.计算广义逆A^(2)_(T,S)的基于函数插值的一族迭代法[J].南京师大学报(自然科学版),2005,28(2):6-13. 被引量:2
  • 2虞志坚.有关Hilbert空间上的投影[J].台州学院学报,2005,27(3):18-20. 被引量:2
  • 3朱超,曹丽琼,陈果良.几类广义逆矩阵的若干性质[J].华东师范大学学报(自然科学版),2006(3):26-31. 被引量:7
  • 4郑兵,钟承奎.Hilbert空间上线性算子广义逆A_(T,S)^((2))的存在性及其表示式[J].数学物理学报(A辑),2007,27(2):288-295. 被引量:8
  • 5谈斌.几类非线性算子零点或不动点迭代算法研究[D].石家庄:军械工程学院,2004.
  • 6D. S. Djordjevie, P. S. Stamimirovic. General Representations of Pseudoinverses [J ]. Mathematicki Vesnik (Belgrade), 1999, 51(3-4) :69-76.
  • 7X. Sheng and G. Chen. Full-rank Representation of the Generalized Inverse and its Application[J]. Int. J. Comput. 2007, 54(2007)1422-1430.
  • 8Guowan. Zhang. A Representation of Moore-Penrose Inverse of a Matrix by its Submatrices[J]. Proceedings of the Eighth International Conference on Matrix Theory and Its Applications in China. 2008, Vol. I : 413-416.
  • 9Guowan. Zhang. A New Characterization and Computation of Generalized AT.S^(2) Inverse[M]. Proceedings of the Third International Workshop on Matrix Analysis and Applications, 2009 (3) : 214-217.
  • 10MARINO G,XU H K.Weak and Strong Convergence Theorems for Strict Pseudo-contractions in Hilbert Spaces[J].Math Anal Appl,2007,32(4):336-349.

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部