期刊文献+

肺结节检测中特征提取方法研究 被引量:5

Research on the Feature Extraction Approach for SPNs Detection
下载PDF
导出
摘要 计算机辅助诊断(Computer-Aided Diagnosis,CAD)系统为肺癌的早期检测和诊断提供了有力的支持.本文对孤立性肺结节特征提取问题进行研究.通过对肺结节和肺内各组织在序列CT图像上的医学征象分析和研究对比,结合专家提供的知识,提出了肺结节特征提取总体方案.该方案分别从肺部CT图像的灰度特征、肺结节形态、纹理、空间上下文特征等几个方面,对关键的医学征象进行图像分析,从而实现对ROI(Regions of Interest)区域的特征提取和量化;提出特征提取的评价方案,实验结果表明,本文提取的特征提取方案是有效的.利用本文提取的特征,肺结节检测正确率达到93.05%,敏感率为94.53%. Image processing techniques have proved to be effective for improvement of radiologists' diagnosis of pubmonary nodules. In this paper, we present a strategy based on feature extraction technique aimed at Solitary Pulmonary Nodules ( SPN ) detection. In feature extraction scheme, 36 features were obtained, contained 3 grey level features, 16 morphological features, 10 texture features and 7 spatial context features. And the classifier ( SVM ) running with the extracted features achieves comparative results, with a result of 93.05% in nodule detection accuracy and 94.53% in sensitivity.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第10期2073-2077,共5页 Journal of Chinese Computer Systems
基金 重庆市重大科技专项项目(CSTC 2008AB5038)资助 重庆市自然科学基金项目(CSTC 2007BB2134))资助
关键词 孤立性 肺结节 特征提取 CT图像 特征评价 isolated solitary pulmonary nodules feature extraction CT images feature assessment
  • 相关文献

参考文献15

  • 1Doi K. Current status and future potential of computer-aided diagnosis in medical imaging [ J]. British Journal of Radiology, 2005, 78 (Special Issue) : S3-S19.
  • 2Lee Yongbum, Ham T. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique [J]. IEEE Trans Med Imaging, 2001, 20(7) : 595-604.
  • 3Jane P Ko, Margrit Betke. Chest CT: automated nodule detection and assessment of change over time-preliminary experiencel [J]. Radiology, 2001, 218( 1 ) :267-273.
  • 4Mousa W A H, Khan M A U. Lung nodule classification utilizing support vectormachines [ C]. Proc. Int. Conf. Image Processing 2002, 3 : 153-156.
  • 5Suzuki K, Doi K. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT[J]. Acad Radiol, 2005, 12(10) :1333-1341.
  • 6Lin Daw-tung, Yah Chung-ren, Chen Wen-tai. Autonomous detection of pulmonary nodules on CT images with a neural network- based fuzzy system. [ J ]. Computerized Medical Imaging and Graphics, 2005, 29(6):447-458.
  • 7Chen Jing-di, Shen Bing-qi. Imaging diagnose and differentiating of solitary pulmonary nodules[J]. New Chinese Medicine, 2005, 36(10) :607-609.
  • 8Tang A W K, Moss H A, Robertson R J H. The solitary pulmonary nodule [ J ]. European Journal of Radiology, 2003, 45 (1) :69- 77.
  • 9Otsu N. A threshold selection method from grey-level histogram [J], IEEE Trans System Man Cybemet, 1978, 9(1 ) :62-66.
  • 10Guo Ping, Wang Yan-xia, Chen Qi-xin, et al. A method for rebuilding graph boundary based on fractal [ J]. Journal of Computational Information Systems, 2006, 2(4) : 1427-1432.

同被引文献26

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部