期刊文献+

一类非弹性碰撞动力学方程的解

Solution to One-dimensional Boltzmann Equation with Inelastic Collisions
下载PDF
导出
摘要 研究一类一维非弹性碰撞动力学方程,提出了一种新的拟线性方法,证明了该类方程具有多项式衰减解,并利用Bellomo、Toscani、Polewczak、Ha等人的工作得到了该解的L1稳定性. In this paper, one-dimensional Boltzmann equation with inelastic collisions is studied, and a new simulated-linearization method is put forward. The solution to the equation is proved to be controlled by the initial value. With the work of Bellomo, Toscani, Polewczak and Ha, L1 stability of the solution is gained.
出处 《许昌学院学报》 CAS 2009年第5期1-4,共4页 Journal of Xuchang University
基金 江西农业大学青年基金项目(2524)
关键词 BOLTZMANN方程 拟线性方程 衰减 Bohzmann equation simulated-linearization method decay
  • 相关文献

参考文献11

  • 1Benedetto D, Caglioti E, Carrillo J, Pulvirenti M. A non Maxwellian equilibrium distribution for one-dimensional granular media [ J ]. J. Stat. Phys, 1998,91 ( 5/6 ) :979 - 990.
  • 2Benedetto D,Caglioti E,Golse F,pulvirenti M. A hydrodynamic model arising in the context of granular media [ J ] . Comput. Math. Appl,1999,38 (7-8) :121-131.
  • 3VBobylev A, Carrillo J A, Gamba I M. On some properties of kinetic and hydrodynamic equations for inelastic interactions [J].J. Star. Phys,2000,98(3/4) : 743 -773.
  • 4Benedetto D ,Caglioti E ,Pulvirenti M. A one dimensional Bohzmann equation with inelastic collisions[ J] . Rend. Sere. Mat. Fis. Milano, 1997,67 : 169 - 179.
  • 5Benedetto D, Caglioti E, Pulvirenti M. A kinetic equation for granular media[ J ]. Math. Model. Numer. Anal, 1997,31 (5) : 615 - 641.
  • 6Bellomo N and Toscani G. On the Cauchy problem for the nonlinear Boltzmann: Global existence,uniqueness and asymptotic stability [ J ]. J. Math. Phys, 1985,26:334 - 338.
  • 7S-Y. Ha. Stability of The Bohzmann equation for the Hard-Sphere Model[ J]. Arch. Rational Mech. Anal,2004,173:279 - 296.
  • 8S-Y. Ha. Nonlinear functionals of the Boltzmann equation and uniform stability estimates [ J]. J. Differential Equs,2005, 215:178-205.
  • 9S-Y. Ha. L1 stability estimate for a one-dimensional Bohzmann equation with inelastic collisions [ J ]. J. Differential Equs, 2002,190 : 621 - 642.
  • 10Polewczak J. Classical solution of the nonlinear Boltzmann equation in all R3 : asymptotic behavior of solutions [ J]. J. Math. Phys, 1988,50:611 - 632.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部