摘要
研究不同目标函数和不同约束条件的离散单因素投资组合模型.给出了一个基于拉格朗日松弛和连续松弛的混合分枝定界算法,并分别采用股票市场的真实数据和随机产生的数据来测试该算法的有效性,最后利用数据结果对不同类型的投资组合模型进行了比较.
This paper studies the discrete single-factor portfolio selection models with different objective functions and different constraints. Using a hybrid branch-and-bound method based on Lagrangian relaxation and continuous relaxation, computational experiments are carried out with data from real-world stock market and those randomly generated. And the different models are compared based on the results.
出处
《许昌学院学报》
CAS
2009年第5期20-26,共7页
Journal of Xuchang University
关键词
离散单因素模型
拉格朗日松弛
连续松弛
分枝定界法
discrete single-factor model
Lagrangian relaxation
continuous relaxation
branch-and-bound method