期刊文献+

基于模糊加权最小二乘的多粒度语言决策信息集成 被引量:2

Aggregating Multi-granularity Decision Making Information Based on Fuzzy Weighted Least Squares Method
下载PDF
导出
摘要 运用最小二乘原理,考虑不同决策专家对其决策结果的信心度并作为信息集成的计算权重,以最终集成结果与单一专家决策信息间的距离平方和为优化目标,建立了多粒度决策信息集成的模糊加权最小二乘规划模型,并以多粒度决策信息的变化范围为约束,与线性距离规划模型进行对比优化计算.结果表明,该模型适用于多粒度语言信息的集成,并能够使最终的群体决策结果尽可能逼近每个决策专家的意见,即降低决策过程中的主观性、计算复杂性及结果残差.通过在水平定向钻机产品方案决策中的实例应用,验证了其具有较好实用性和有效性. A fuzzy weighted least squares programming model was proposed for aggregating multi-granularity linguistic judgments based on the principle of least squares. In the model, the confidence levels of experts are provided as the weights of the model calculation. The weighted sum of distance squares between the final result and each judgment is used as the optimizing objective. The change ranges of jugements are employed as the constraints of the model. Contrasted to the linear distance programming model, the model can be applicable for the aggregating of multi-granularity linguistic informations and make the final group judgment as close to each individual judgment as possible. The comparson of the results demonstrates the model can decrease the subjectivity, calculating complexity and remaining error in the decision process. The effectiveness and practicability of the proposed model were illustrated and demonstrated in a real-world application of product design altenrative selection for horizontal directional drilling machine.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第9期1377-1382,共6页 Journal of Shanghai Jiaotong University
基金 国家高技术研究发展计划(863)资助项目(2007AA04Z140) 教育部高等学校博士点基金资助项目(20070248020) 上海市重点学科建设资助项目(Y0102)
关键词 多粒度语言决策信息 群决策 最小二乘法 专家信心度 multi-granularity linguistic information group decision making least squares method confidence level of expert
  • 相关文献

参考文献13

  • 1Buyukozkan G, Feyzioglu O, Ruan D. Fuzzy group decision-making to multiple preference formats in quality function deployment [J]. Computers in Industry, 2007, 58(5): 392-402.
  • 2Herrera F, Herrera-Viedma E, Martinez L. A fusion approach for managing multi-granularity linguistic term sets in decision-making [J]. Fuzzy Sets and Systems, 2000, 114(1): 43-58.
  • 3Herrera F, Martinez L. A model based on linguistic 2-tuples for dealing with multigranularity hierarchical linguistic contexts in multiexpert decision-making[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 2001, 31(2):227-234.
  • 4Sanchez P J, Perez L G, Mata F, et al. A multi- granular linguistic model to evaluate the suitability of installing an ERP system [J]. Mathware & Soft Com- puting, 2005, 12(2-3): 217-233.
  • 5姜艳萍,樊治平.基于不同粒度语言判断矩阵的群决策方法[J].系统工程学报,2006,21(3):249-253. 被引量:46
  • 6Jiang Y P, Fan Z P, Ma J. A method for group decision making in multi-granularity linguistic assessment information[J]. Information Sciences, 2008, 178(4) : 1098-1109.
  • 7Chen L H, Weng M C. An evaluation approach to engineering design in QFD process using fuzzy goal programming models [J]. European Journal of Operational Research, 2006, 172(]): 230-248.
  • 8Kreng V B, Wu C Y. Evaluation of knowledge portal development tools using a fuzzy AHP approach: the case of Taiwan Residents stone industry [J]. European Journal of Operational Research, 2007, 176(3): 1795-1810.
  • 9Bordogna G, Fedrizzi M, Pasi G. A linguistic modeling of consensus in group decision making based on OWA operators [J]. IEEE T Syst Man CY A, 1997, 27(1) :126-132.
  • 10Olcer A I, Odabagi A Y. A new fuzzy multiple attributive group decision making methodology and its application to propulsion/manoeuvring system selection problem [J]. European Journal of Operational Research, 2005, 166(1): 93-114.

二级参考文献10

  • 1Hwang C L, Lin M J. Group Decision Making Under Multiple Criteria[ M]. Berlin: Springer-Verlag, 1987.
  • 2Herrera F, Martinez L. A model based on linguistic 2-tuples for dealing with multi-granularity hierarchical hnguistic contexts in multiexpert decision-making[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B, 2001, 31(2): 227-234.
  • 3Herrera F, Herrera-Viedma E, Martinez L. A fusion approach for managing multi-granularity linguistic terms sets in decision making[J]. Fuzzy Sets and Systems, 2000, 114(1): 43-58.
  • 4Herrera F, Martinez L. A 2-tuple fuzzy hnguistic representation model for computing with words[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(6): 746-752.
  • 5Herrera F, Herrera-Viedma E, Verdegay J L. A sequential selection process in group decision-making with linguistic assessments[J]. Information Sciences, 1995, 85: 223-229.
  • 6Marimin M, Umano M, Hatono I, et al. Linguistic labels for expressing fuzzy preference relations in fuzzy group decision making[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 1998, 28(2): 205-218.
  • 7Herrera F, Herrera-Viedma E, Verdegay J L. Direct approach processes in group decision making using linguistic OWA operators [J]. Fuzzy Sets and Systems, 1996, 78(1): 73-87.
  • 8Bordogna G, Fedrizzi M, Pasi G. A linguistic modeling of consensus in group decision making based on OWA operators[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 1997, 27(1): 126-132.
  • 9Herrera F, Herrera-Viedma E, Verdegay J L. A model of consensus in group decision making under hnguistic assessments[J].Fuzzy Sets and Systems, 1996, 79(1): 73-87.
  • 10Herrera F, Herrera-Viedma E. Linguistic decision analysis: Steps for solving decision problems under linguistic information[J].Fuzzy Sets and Systems, 2000, 115(1): 67-82.

共引文献45

同被引文献22

  • 1Deng Weijaw. Fuzzy importanceperformance analysis for determining critical service attributes[J]. International Journal of Service Industry Management, 2008, 19 (2): 252270.
  • 2Ostrom A, Iacobucci D. Consumer tradeoffs and the evaluation of services[J]. Journal of Marketing, 1995, 59(1): 1728.
  • 3Danaher P J. Using conjoint analysis to determine the relative importance of service attributes measured in customer satisfaction surveys[J]. Journal of Retailing, 1997, 73(2): 235260.
  • 4Matzler K, Sauerwein E. The factor structure of customer satisfaction: An empirical test of the importance grid and the penaltyrewardcontrast analysis[J]. International Journal of Service Industry Management, 2002, 13(4): 314332.
  • 5Matzler K, Fuchs M, Schubert A K. Employee satisfaction: Does Kano’s model apply?[J]. Total Quality Management and Business Excellence, 2004, 15(9/10): 11791198.
  • 6Oh H. Revisiting importanceperformance analysis[J]. Tourism Management, 2001, 22(6):617627.
  • 7Matzler K, Bailom F, Hinterhuber, et al. The asymmetric relationship between attributelevel performance and overall customer satisfaction: A reconsideration of the importanceperformance analysis[J]. Industrial Marketing Management, 2004, 33(4): 271277.
  • 8Herreraa F, HerreraViedmaa E, Martinez L. A fusion approach for managing multigranularity linguistic term sets in decision making[J]. Fuzzy Sets and Systems, 1998, 114(1):4358.
  • 9MUAMMER O. Factors which influence decision mak-ing in new product evaluation [J]. European Journal ofOperational Research. 2005,163(3) : 784 -801.
  • 10GULFEN T,BBHADIR G,CENGIZ K,et al. An inte-grated fuzzy multi-criteria decision making methodologyfor material handling equipment selection problem and anapplication [J], Expert Systems with Applications,2010,37(4): 2853 -2863.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部