期刊文献+

基于SVM分类算法的选股研究 被引量:3

Research of Selecting Stocks Based on Classification Method of SVM
下载PDF
导出
摘要 采用稳健的改进主成分分析与支持向量机(PCA-SVM)算法进行特征提取,分析中国股票市场的股票选择问题,并采用中国沪、深A股市场中上市公司数据验证该方法的有效性.结果表明,运用PCA-SVM算法得到的组合回报率超过了市场基准. Selecting stocks in China s stock market was researched using a classification method of support vector machine(SVM) and robust and improved method of PCA for feature extraction.Using the data of listed companies of China A stocks market experiments were done to test the validity of the method mentioned above.The result indicates that portfolio s return rate using classification method of SVM is higher than the market benchmark.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第9期1412-1416,共5页 Journal of Shanghai Jiaotong University
关键词 支持向量机 分类算法 特征提取 股票选择 回报率 support vector machine(SVM) classification algorithm feature extraction stock selection return rate
  • 相关文献

参考文献6

  • 1Fama E F, French K R. The cross-section of expected returns [J]. Journal of Finance, 1992, 47(2) :427-465.
  • 2Lo A W, MacKinlay A C. Stock market prices do not follow random walks.- Evidence from a simple specification test [J]. The review of Financial Studies, 1988 (1) : 41-46.
  • 3Banz R. The relationship between return and market value of common stocks[J].Journal of Financial Economics, 1981, 9(1): 3-18.
  • 4Fama E, French K. The cross-section of expected stock returns [J]. Journal of Finance, 1992, 47(2): 427-465.
  • 5Fan A, Palaniswami M. Stock selection using support vector maehines[C]// Proceedings of the International Joint Conference on Neural Networks. Washington, DC USA: IEEE, 2001: 1793-1798.
  • 6朱顺泉,张尧庭.改进的主成分分析在公司财务评价中的应用[J].山西财经大学学报,2003,25(2):98-100. 被引量:15

二级参考文献1

共引文献14

同被引文献16

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部