期刊文献+

水基碳纳米管悬浮液强制对流换热特性 被引量:1

Characteristics on Flow Drag and Heat Transfer of Water Based Carbon Nanotube Suspension
下载PDF
导出
摘要 对水基碳纳米管(CNT)悬浮液在内径1.02 mm水平不锈钢管内的强制对流换热和流动阻力特性进行研究,考察了CNT质量分数和悬浮液温度对悬浮液强化传热和对流换热特性的影响.结果表明:CNT/水悬浮液的流动阻力特性呈现出与水相似的特性,具有常规流体的流动特性;与水相比,CNT/水悬浮液显示出较好的强化换热特性,且CNT/水悬浮液温度越高,其传热强化效果越明显;当CNT/水悬浮液温度较高时,其在对流传热中呈现出明显的纳米效应,而在常温时依然显示出常规流体的传热特性. This paper studied the effect of fluid temperature on the forced convective flow drag and heat transfer characteristics of CNTs (carbon nanotube)-water suspension. Experiments were carried out in a horizontal steel tube with an inner diameter of 1.02 mm. No surfactant was added. The experimental results show that the flow drag characteristic of CNT suspension is almost the same as that of water. While the convective heat transfer of CNT suspensions is significantly enhanced. The fluid temperature has no effect on flow drag but has great effect on the heat transfer. The CNT-water suspension presents nanometer characteristics on convective heat transfer at high fluid temperature, while at room temperature the CNT-water suspension can be regarded as conventional fluid.
作者 廖亮 刘振华
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第9期1465-1468,共4页 Journal of Shanghai Jiaotong University
关键词 纳米悬浮液 碳纳米管 强制对流 强化换热 流动阻力 nanofluid carbon nanotube(CNT) forced convection enhanced heat transfer flow drag
  • 相关文献

参考文献8

  • 1Choi S U S, Zhang Z G, Yu W, et al. Anomalous thermal conductivity enhancement in nanotube suspensions [J]. Applied Physics Letters, 2001, 79 (14) : 2252-2254.
  • 2Ding Y L, Alias H, Wen D S, etal. Heat transfer of aqueous suspensions of carbon nanotubes (MWNT nanofluids)[J]. International Journal of Heat and Mass Transfer, 2006, 49(1-2): 240-250.
  • 3Chen H S, Yang W, He Y R, etal. Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids)[J]. Powder Technology, 2007, 183(1) : 63-72.
  • 4Ko G H, Heo K, Lee K, et al. An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube [J]. International Journal of Heat and Mass Transfer, 2007, 50 (23-24): 4749-4753.
  • 5廖亮,刘振华.CuO纳米颗粒悬浮液在小管内的流动和强制对流换热特性[J].上海交通大学学报,2009,43(5):789-794. 被引量:3
  • 6伊杰里奇克.水力摩阻手册[M].汪海源,高凤环译.北京:机械工业出版社,1985.
  • 7Sieder E N, Tate C E. Heat transfer and pressure drop of liquids in tubes[J]. Industrial & Engineering Chemistry, 1936, 28(1) : 1429-1435.
  • 8罗森诺.传热学手册[M].李荫亭译.北京:科学出版社,1985.

二级参考文献11

共引文献3

同被引文献15

  • 1Tuckermann D B, Pease R F. High Performance Heat Sinks for VLSI [J]. IEEE. Vol.EDL-2, 1981, 5(5): 126-129.
  • 2Lee S, Choi S U S. Application of Metallic Nanoparticle Suspension in Advanced Cooling Systems [J]. American Society of Mechanical Engineers, PVP, 1996, 342:227-234.
  • 3Choi S B, Barron R F, Warrington R O. Fluid Flow and Heat Transfer in Microtubes [J]. Micromechanical Sensors Actuators and Systems, 1991, 32:123-133.
  • 4Wu H Y, Cheng P. An Experimental Study of Convective Heat Transfer in Silicon Microchannels With Different Surface Conditions [J]. International Journal of Heat and Mass Transfer. 2003, 46:2547-2546.
  • 5Guo Z Y, Li Z X. Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale [J]. International Journal of Heat and Mass Transfer, 2003, 24:284-298.
  • 6Choi S U S. Enhancing Thermal Conductivity of Fluids With Nanoparticles [J]. ASME, FED, 1995, 231:99-105.
  • 7Eastman J A, Choi S U S, Li S, et al. Enhanced Thermal Conductivity Through the Development of Nanofluids. Materials Research Society Symposium Proceedings, 1996, 457(3): 3-11.
  • 8陈骁,李俊明,戴闻亭等.添加纳米颗粒强化微小通道内对流换热[C]..第六届全国低温与制冷工程大会会议论文集.西安,2003.378-382.
  • 9Yimin Xuan, Wilfried Roetzel. Conception for Heat Transfer Correlation of Nanofluids [J]. International Journal of Heat and Mass Transfer, 2000, 43:3701-3707.
  • 10Fujii M, Zhang X, Xie H, et al. Measuring the Thermal Conductivity of a Single Carbon Nanotube [J]. Phys Rev Lett, 2005, 95:065502.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部