期刊文献+

针对非均匀数据集的DBSCAN过滤式改进算法 被引量:11

DBSCAN algorithm based on filtration for datasets with varied densities
下载PDF
导出
摘要 针对在数据分布不均匀时,由于DBSCAN使用统一的全局变量,使得聚类的效果差,提出了一种基于过滤的DBSCAN算法。该算法的思想是:在调用传统的DBSCAN算法前,先对数据集进行预处理,针对所有点的k-dist数据进行一维聚类,自动计算出不同的Eps;然后再根据每个Eps分别调用传统的DBSCAN算法,从而找出非均匀数据集的各种聚类。实验结果表明,改进算法对密度不均匀的数据能够有效聚类。 When data distribution was not even, DBSCAN was clustering quality degrades for using the same global variable. This paper proposed a filtration-based DBSCAN algorithm. The basic idea of the algorithm was that, before adopting traditional DBSCAN algorithm, according to the data point' s k-dist plot, using 1-dimension clustering to get all the clusters, then getting several values of parameter Eps for different densities. With different values of Eps, adopted DBSCAN algorithm in order to find out clusters with varied densities simultaneity. The experimental result demonstrates that the improved algorithm is effective on clustering the datasets with varied densities.
出处 《计算机应用研究》 CSCD 北大核心 2009年第10期3721-3723,共3页 Application Research of Computers
基金 重庆市科委自然科学基金计划资助项目(2007BB2372)
关键词 聚类 DBSCAN 过滤 非均匀密度 数据挖掘 clustering DBSCAN filtration varied densities data mining
  • 相关文献

参考文献7

二级参考文献26

  • 1周水庚,周傲英,金文,范晔,钱卫宁.FDBSCAN:一种快速 DBSCAN算法(英文)[J].软件学报,2000,11(6):735-744. 被引量:42
  • 2[1]Han JW,Kamber M. Data Mining:Concepts and Techniques[D]. Simon Fraser University,2000.
  • 3[2]Alsabti K,Ranka S,Singh V.An efficient k-means clustering algorithm[A]. IPPS-98,Proceedings of the First Workshop on High Performance Date Mining[C]. Orlando,Florida,USA,1998.
  • 4[3]Ester M,Kriegel HP,Sander J,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[A]. Proceedings 2nd International Conference on Knowledge Discovery and Data Mining[C]. Portland,OR,1996. 226-231.
  • 5[4]Wang HX,Zaniolo C. Database System Extensions for Decision Support:the AXL Approach[A]. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery[C]. 2000. 11-20.
  • 6周水庚,复旦大学计算机科学系技术报告,1999年
  • 7Zhan W,Proc of the 2 3 rd VL DB Conference,1997年,186页
  • 8Chen M S,IEEE Trans Knowledge Data Engineering,1996年,8卷,6期,866页
  • 9Zhang T,Proc ACM SIGMOD Int Conf on Management of Data,1996年,73页
  • 10Ng R T,Proc 20th VL DB Conference,1994年,144页

共引文献205

同被引文献109

引证文献11

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部