摘要
为解决医学图像三维可视化中大规模体数据显示速度与成像质量问题,引入一种基于蒙特卡罗方法的新颖体绘制算法。本算法根据给出的概率密度函数从随机样本点或其子集中选取一个点阵来进行绘制,主要适用于对大规模体数据集的有效可视化。另外,使用渐进细化的方法在图像质量和交互性上进行权衡折中,以适应实时要求。实验结果表明,在最终图像分辨率固定的情况下,本算法的时间复杂度和空间复杂度都比之前的算法要好,成像质量也满足实时绘制要求,可以在实际应用中使用。
In order to resolve the rendering speed and imaging quality problem in 3D Visualization of medical image, introduced a novel volume rendering algorithm based on Monte Carlo method. According to the given probability density function, selected and rendered a point cloud of random samples or its subset. Mainly presented the algorithm to efficiently visualize the large volume data sets. And obtained the trade-off between image quality and interactivity by using progressive refinement. Given a fixed image resolution, the results of experimentation show that the time complexity and the memory complexity of the algorithm are better than previous methods, and imaging quality of the algorithm meets the demand of real-time rendering.
出处
《计算机应用研究》
CSCD
北大核心
2009年第10期3971-3974,4000,共5页
Application Research of Computers
基金
国家"863"计划资助项目(2006AA02Z346)
广东省自然科学基金团队项目(6200171)
关键词
体绘制
蒙特卡罗积分
重要性采样
渐进细化
volume rendering
Monte Carlo integration
importance sampling
progressive refinement