期刊文献+

带有负顾客且具有Bernoulli反馈的M/M/1工作休假排队(英文) 被引量:3

M/M/1 Bernoulli Feedback Queue with Negative Customers and Working Vacations
下载PDF
导出
摘要 本文研究带反馈的具有正、负两类顾客的M/M/1工作休假排队模型.工作休假策略为空竭服务多重工作休假.负顾客一对一抵消队尾的正顾客(若有),若系统中无正顾客时,到达的负顾客自动消失,负顾客不接受服务.完成服务的正顾客以概率p(0<p(?)1)离开系统,以概率1-p反馈到队尾寻求再次服务.使用拟生灭过程和矩阵几何解方法得到了系统队长的稳态分布,证明了系统队长随机分解结果并给出稳态下系统中正顾客的平均队长.本模型是M/M/1工作休假排队模型的推广. The paper deals with an M/M/1 feedback queue with working vacations in which customers axe either “positive” or “negative”. The working vacation policy is exhaustive service and multiple working vacations. Negative customers remove positive customers only one by one at the tail (if present). When a negative customer arrives, if the system is empty, it will disappear. Negative customers need no services. Just after completion of his service, a positive customer may leave the system with probability p(0〈P≤1), or feedback with probabilityl-p. Using QBD (quasi birth and death) process and Matrix-Geometric solution, we derive the steady-state distributions for the number of customers in the system and prove the result of stochastic decomposition of the queue length and gain mean of the system size of positive customers. The model is an extension of M/M/1 queue with working vacations.
出处 《运筹学学报》 CSCD 2009年第3期49-57,共9页 Operations Research Transactions
基金 supported by the National Science Foundation of China(Grant No.70571031,10571076)
关键词 运筹学 反馈 负顾客 工作休假 拟生灭过程 矩阵几何解 稳态分布 机分解 Operations research, feedback, negative customers, working vacations, QBD process, Matrix-Geometric solution, steady-state distributions, stochastic decompo- sition
  • 相关文献

参考文献15

  • 1Neuts M. Matrix-geometric Solutions in Stochastic Models[M]. Johns Hopkins University Press, Baltimore 1981.
  • 2Tian N. Vacation Stochastic Service System[M]. Beijing University Press, Beijing 2001.
  • 3Servi L.D, Finn S.G. M/M/1 queues with working vacations (M/M/1/WV)[J]. Performance Evaluation, 2002,50:41-52.
  • 4Liu W, Xu X, Tian N. Stochastic decompositions in tile M/M/1 queue with working vacations[J]. Operations Research Letters, 2007, 35:595-600.
  • 5Yutaka Baba. Analysis of a GI/M/1 queue with multiple working vacations[J]. Operations Research Letters, 2005, 33:201-209.
  • 6Krishna Kumar B, Arivudainambi D, Krishnamoorthy A. Some results on a generalized M/G/1 feedback queue with negative customers[J]. Operations Research Letters, 2006,143:277-296.
  • 7Doshi B. Queuing systems with vacations- a survey[J]. Queuing Systems,1986,1(1):29-66.
  • 8Takagi H, Queuing Analysis[J]. Elsevier Science Publishers, 1991, 9(1).
  • 9Tian N, Zhang Z.G. Vacation Queuing Models: Theory and Applications[M]. Springer, New York,2006.
  • 10Tian N, Zhang Z. A two threshold vacation policy in multi-server queuing systems[J]. Eur. J. Oper. Res. 2006,168(1):153-163.

同被引文献14

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部