期刊文献+

一个求解半正定规划问题的新原始-对偶内点算法

A New Primal-dual Interior-point Algorithm for Semidefinite Optimization
下载PDF
导出
摘要 在原始对偶内点算法的设计和分析中,障碍函数对算法的搜索方法和复杂性起着重要的作用.本文由核函数来确定障碍函数,设计了一个求解半正定规划问题的原始-对偶内点算法.这个障碍函数即可以定义算法新的搜索方向,又度量迭代点与中心路径的距离,同时对算法的复杂性分析起着关键的作用.我们计算了算法的迭代界,得出了关于大步校正法和小步校正法的迭代界,它们分别是O(n^(1/2)log n log n/∈)和O(n^(1/2)log n/∈),这里n是半正定规划问题的维数.最后,我们根据一个算例,说明了算法的有效性以及对核函数的参数的敏感性. The barrier function plays an important role in designing and analyzing primal-dual interior-point methods. In this paper we present a primal-dual interior-point algorithm based on a barrier function determined by the kernel function for semidefinite optimization problems. The barrier determined by kernel function is not only to define the search direction for the algorithm, but also to measures the distance between the iterations and the central path. We compute the iteration bounds and derive the iteration bounds:O(√n log n log n/c) for large- and O(√n log n/ε) for small-update methods, respectively, where n is the dimension of the problem considered. The numerical example shows that the algorithm is efficient and is related with the parameter in kernel function.
出处 《运筹学学报》 CSCD 2009年第3期67-82,共16页 Operations Research Transactions
基金 国家自然科学基金项目(编号:10117733) 高等学校博士学科专项科研基金资助课题(编号:200802800010) 上海市第三期重点学科(编号:S30104)和嘉兴学院课题
关键词 运筹学 半正定规划 原始-对偶内点算法 大步-小步校正法 迭代界 Operations research, nonconvex QCQP wisemidefinite optimization, primal-dual interior-point algorithm, large and small-update method, polynomial complexity
  • 相关文献

参考文献12

  • 1Andersen E D, Gondzio J, Meszaros Cs, and Xu, X. Implementation of interior point methods for large scale linear programming. In Terlaky, T. Ed., Interior Point Methods o/Mathematical Programming, Kluwer Academic Publishers, The Netherlands, 189-252, 1996.
  • 2Bai Y Q, E1 Ghami M, and Roos C. A comparative study of kernel functions for primaldual interior-point algorithms in linear optimization. SIAM Journal on Optimization, 15(1): 101-128, 2004.
  • 3Bai Y Q, Guo J, and Roos C. A new kernel function yielding the best known iteration bounds for primal-dual interior-point algorithms, http://www.isa, ewi. tudelft. nl/ roos/wpapers.html.
  • 4Horn R A and Charles R J. Topics in Matrix Analysis, Cambridge University Press, 1991.
  • 5Lutkepohl H. Handbook of matrices, John Wiley & Sons, 1996.
  • 6Nesterov Y E and Todd M J. Self-scaled barries and interior-point methods for convex programming, Mathematics of Operations Reaearch, 22(1): 1-42, 1997.
  • 7Nesterov Y E and Todd M J. Primal-dual interior-point methods for self-scaled cones. SIAM Journal on Optimization, 8(2): 324-364, 1998.
  • 8Peng J M. Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms. Princeton University Press, 2002.
  • 9Roos C, Terlaky T, and Vial J-Ph. Theory and Algorithms for Linear Optimization. An Interior-Point Approach. John Wiley & Sons, Chichester, UK, 1997.
  • 10Sonnevend G. An "analytic center" for polyhedrons and new classes of for linear (smooth, convex) programming. In Prekopa, A. Szelezsan, J. global algorithms and Strazicky, B. Eds. System Modelling and Optimization : Proceedings of the 12th IFIP-Conference held in Budapest, Hungary, September 1985, volume 84 of Lecture Notes in Control and In.formation Sciences, Springer Verlag, Berlin, West-Germany, 866-876, 1986.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部