摘要
在原始对偶内点算法的设计和分析中,障碍函数对算法的搜索方法和复杂性起着重要的作用.本文由核函数来确定障碍函数,设计了一个求解半正定规划问题的原始-对偶内点算法.这个障碍函数即可以定义算法新的搜索方向,又度量迭代点与中心路径的距离,同时对算法的复杂性分析起着关键的作用.我们计算了算法的迭代界,得出了关于大步校正法和小步校正法的迭代界,它们分别是O(n^(1/2)log n log n/∈)和O(n^(1/2)log n/∈),这里n是半正定规划问题的维数.最后,我们根据一个算例,说明了算法的有效性以及对核函数的参数的敏感性.
The barrier function plays an important role in designing and analyzing primal-dual interior-point methods. In this paper we present a primal-dual interior-point algorithm based on a barrier function determined by the kernel function for semidefinite optimization problems. The barrier determined by kernel function is not only to define the search direction for the algorithm, but also to measures the distance between the iterations and the central path. We compute the iteration bounds and derive the iteration bounds:O(√n log n log n/c) for large- and O(√n log n/ε) for small-update methods, respectively, where n is the dimension of the problem considered. The numerical example shows that the algorithm is efficient and is related with the parameter in kernel function.
出处
《运筹学学报》
CSCD
2009年第3期67-82,共16页
Operations Research Transactions
基金
国家自然科学基金项目(编号:10117733)
高等学校博士学科专项科研基金资助课题(编号:200802800010)
上海市第三期重点学科(编号:S30104)和嘉兴学院课题
关键词
运筹学
半正定规划
原始-对偶内点算法
大步-小步校正法
迭代界
Operations research, nonconvex QCQP wisemidefinite optimization, primal-dual interior-point algorithm, large and small-update method, polynomial complexity