期刊文献+

随机耦合模型在微波腔体研究中的应用 被引量:1

Application of the random coupling model to microwave cavities
下载PDF
导出
摘要 文章分析了随机耦合模型在微波腔体研究中的应用,主要介绍了该理论中重要的归一化阻抗矩阵公式和各个参量的含义,并用一个简单模型进行了举例分析;说明随机耦合模型方法在分析电磁波腔体中电磁物理量的统计特性具有重要的理论和工程意义,其在电磁兼容、高功率微波效应研究等方面具有重要的价值。 The application of the random coupling model to the study of microwave cavities is analyzed. The formula of the normalized impedance matrix is derived,and the parameters of this formula are introduced. The method is explained by a simple model. The method of random coupling model is of important significance of theory and engineering in the analysis of statistical nature of electromagnetic field quantities in microwave cavities, and it has important value in the study of electromagnetic compatibility and effect of high power microwave.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第9期1297-1300,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家计划资助项目
关键词 随机耦合模型 随机矩阵理论 随机平面波假说 散射矩阵 阻抗矩阵 random coupling model random matrix theory random plane wave hypothesis scattering matrix impedance matrix
  • 相关文献

参考文献11

  • 1陈修桥,胡以华,张建华,黄友锐,何丽.计算机机箱的电磁脉冲耦合模拟仿真[J].系统仿真学报,2004,16(12):2786-2788. 被引量:24
  • 2刘长军,黄卡玛,闫丽萍,蒲天乐,张文赋.电磁辐射作用于计算机主板的模拟及效应评估[J].强激光与粒子束,2006,18(5):847-852. 被引量:16
  • 3Mehta M L, Random matrices[M].San Diego:Elsevier Academic Press, 2004: 30-120.
  • 4Hemmady S, Zheng X, Hart J, et al. Universal properties of two-port scattering, impedance, and admittance matrices of wave-chaotic systems[J]. Phys Rev E, 2006, 74(3): 036213.
  • 5Zheng X, Antonsen T M, Ott E. Statistics of impedance and scattering matrices in chaotic microwave cavities: single channel case[J]. Electromagnetics, 2006, 26: 3-35.
  • 6Hemmady S, Zheng X, Antonsen T M, et al. Universal statistics of the scattering coefficient of chaotic microwave cavities[J]. Phys Rev E,2005, 71(5):056215.
  • 7Zheng X, Antonsen T M, Ott E. Statistics of impedance and scattering matrices in chaotic microwave cavities with multiple ports[J]. Electromagnetics, 2006, 26: 37-55.
  • 8Zheng X, Hemmady S, Antonsen T M, et al. Characterization of fluctuations of impedance and scattering matrices in wave chaotic scattering [J]. Phys Rev E, 2006, 73: 046208.
  • 9Ott E. Chaos in dynamical systems[M]. Cambridge University Press, 1993:421-150.
  • 10Kim Y H,Kuhl U, Stockmarm H J, et al. Measurement of long-range wave function correlations in an open microwave billiard[J/OL], http://arxiv. org/abs/cond- mat/ 0407669v1, 2008-09-10.

二级参考文献18

共引文献35

同被引文献19

  • 1Holland R, John R S. Statistical electromagneties[R]. AFRL-DE-PS-TR-1998-1025, Air Force Research Laboratory, Kirtland Air Force Base.
  • 2Zheng X, Antonsen T M, Ott E. Statistics of impedance and scattering matrices in chaotic microwave cavities: single channel case[J]. Elec- tromagT:etics, 2006, 26: 3-35.
  • 3Hemmady S, Zheng X, Ott E, et aI. Universal impedance fluctuations in wave chaotic systems[J]. Phys Rev Lett, 2005, 94: 014102.
  • 4Hemmady S. Zheng X, Antonsen T M, et al. Universal statistics of the scattering coefficient of chaotic microwave cavities[J]. Phys Rev E, 2005, 71:056215.
  • 5Zheng X. Anmnsen T M, Ott E. Statistics of impedance and scattering matrices in chaotic microwave cavities with multiple ports[J]. Elec- tromagwtics. 2006; 26:37 -55.
  • 6Hemmady S. A wave-chaotic approach to predicting and measuring electromagnetic quantities in complicated enclosures[D]. Maryland: Uni- versity of Maryland, 2006.
  • 7Hemmady S, Zheng X, Antonsen T M, et al. Aspects of the scattering and impedance properties of chaotic microwave cavities[J]. Acta Physica Polonica A, 2006 ; 109 (1) : 65-71.
  • 8Zheng X, Hemmady S, Antonsen T M, et al. Characterization of fluctuations of impedance and scattering matrices in wave chaotic scattering [J]. PhysRevE, 2006, 73: 046208.
  • 9Hemmady S, Zheng X, Hart J, et al, Universal properties of two-port scattering, impedance, and admittance matrices of wave-chaotic sys- tems[J]. PhysRevE, 2006, 74: 036213.
  • 10Mehta M L. Random matrices[M]. San Diego: Academic Press, 1991.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部