期刊文献+

分数阶时滞微分系统的解 被引量:5

On the solution of fractional order differential systems with delay
下载PDF
导出
摘要 文章主要研究了一类分数阶时滞微分系统,首先分析了该系统的可解性,之后通过定义基解矩阵和利用拉普拉斯变换给出其通解。 This paper studies fractional order differential systems with delay. At first, the solvability of the fractional order differential systems with delay is analyzed. Then the general solution of the fractional order differential systems with delay is given by defining the matrix of the basic solution and by Laplace transformation.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第9期1439-1441,共3页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(10771001) 教育部科学技术研究重点基金资助项目(205068) 安徽省教育厅自然科学基金资助项目(KJ2008B152) 安徽大学创新团队基金资助项目
关键词 分数微分系统 时滞 通解 fractional differential system delay general solution
  • 相关文献

参考文献9

  • 1Podlubny I. Fractional differential equations[M]. San Diego: Elsevier Academic Press, 1999:62-146.
  • 2Miller K S, Ross B. An introduction to the fractional calculus and fractional differential equations [M]. New York: John Wiley & Sons, 1993 : 1 - 174.
  • 3Bonilla B, Rivero M, Trujillo J J. On systems of linear fractional differential equations with constant coefficients [J]. Applied Math and Computation, 2007, 187 (1): 68-78.
  • 4Samko S G, Kilhas A A, Mariehev O I. Fractinal integrals and derivatives: theory and applications[M]. SwitzerLand: Gordon and Breach Science Publishers, 1993:1-267.
  • 5郑祖庥.泛函微分方程[M].合肥:安徽教育出版社,1992.
  • 6Hale J. Introduction to functional differential equations [M]. New York: Springer-Verlag, 1977 : 11-32.
  • 7蒋威,郑祖庥.退化时滞微分系统的通解[J].数学学报(中文版),1999,42(5):769-780. 被引量:17
  • 8张海,蒋威.一般退化中立型微分系统解的存在性及通解[J].合肥工业大学学报(自然科学版),2007,30(5):630-633. 被引量:3
  • 9Lakshmikantham V. Theory of fractional functional differential equations[J]. Nonlinear Analysis, 2008, 69(10): 3337-3343.

二级参考文献30

  • 1周宗福.一般退化时滞微分系统解的存在性及通解[J].数学研究,1998,31(4):411-416. 被引量:3
  • 2蒋威,郑祖庥.退化时滞差分系统的通解[J].数学研究,1998,31(1):44-50. 被引量:12
  • 3蒋威.滞后非线性系统的一般化最优控制[J].安徽大学学报(自然科学版),1996,20(2):16-21. 被引量:1
  • 4刘永清 关治洪.测度型脉冲大系统的稳定、镇定与控制.大型动力系统的理论与应用(卷5)[M].广州:华南理工大学出版社,1996..
  • 5蒋威.广义时滞控制系统的输出反馈正常化.安徽大学96学术活动月论文选编[M].合肥:安徽大学出版社,1996.310-313.
  • 6Jiang Wei,Ann Differ Equ,1998年,14卷,2期,204页
  • 7蒋威,数学季刊,1998年,13卷,1期
  • 8蒋威,数学研究,1998年,31卷,1期,44页
  • 9Jiang Wei,Ann Differ Equ,1997年,13卷,2期,146页
  • 10Jiangwe,Math Mech,1997年,18卷,9期,871页

共引文献21

同被引文献25

  • 1Miller K S,Boss B. An introduction to the fractional calculus and fractional differential equations [M]. New York: John Wiley and Sons, 1993 : 1-174.
  • 2Lakshmikantham V. Theory of fractional functional differential equations [J]. Nonlinear Analysis, 2008, 69 ( 10 ) : 3337-3343.
  • 3Arikoglu A, Ozkol I. Solution of fractional differential equations by using differential transform method [J]. Chaos, Solitons & Fractals, 2007,34 (5): 1473- 1481.
  • 4Jiang Wei. Eigenvalue and stability of singular differential delay systems [J]. Mathematiacal Analysis and Applications, 2004,297: 305-316.
  • 5郑祖庥.泛函微分方程理论[M].合肥:安徽教育出版社,1992..
  • 6Shantanu Das.Functional Fractional Calculus for System Identification and Controls[]..2008
  • 7V.Lakshmikantham.Theory of fractional functional differential equations[].Nonlinear Analysis.2008
  • 8Wei Jiang.The constant variation formulae for singular fractional differential systems with delay[].Computers and Mathematics With Applications.2009
  • 9Rabha W.Ibrahim,Shaher Momani.On the existence and uniqueness of solutions of a class of fractional differential equations[].Journal of Mathematical Analysis and Applications.2007
  • 10Zhixin Tai,Xingcheng Wang.Controllability of impulsive neutral integrodifferential systems with infinite delay in Banach spaces[].Nonlinear Analysis.2009

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部