期刊文献+

RDSPH:一种适用于一维非连续条件的新SPH方法 被引量:2

A New One-dimensional Smoothed Particle Hydrodynamics Method in Simulating Discontinuous Problem
下载PDF
导出
摘要 基于恢复粒子一致性的光滑粒子流体动力学(RSPH)方法,同时借鉴DCSM P方法,在非连续区间上对未知函数分段泰勒展开,并保留零阶项和一阶项,构建了一套适合于模拟一维非连续物理现象的新SPH方法(RDSPH)。比较不同SPH方程近似二次函数的结果,新方法不仅改进了传统SPH方法存在的边界缺陷问题,同时在非连续区域内也能更有效地修复由非连续引起的核近似截断积分和消除粒子不一致性所造成的误差。 For simulating discontinuous physical phenomenon,this paper puts forward a new one-dimensional formula based on restoring particle inconsistency in smoothed particle hydrodynamics (RSPH). Applying Taylor series expansion, neglecting the second and higher derivatives, and associating with these equations,the new approach deduces a new kernel and particle approximation without kernel esti- mation. In the numerical simulation, the new formulation not only remedies the boundary deficiency problem in the original SPH but also more efficiently repairs the truncated integral in kernel approximation caused by discontinuity and eliminates the errors from particle inconsistency in discontinuous re- gion.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2009年第3期9-13,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10447001) 广西自然科学基金资助项目(0542045) 广西研究生教育创新计划项目
关键词 SPH 非连续 核函数 无网格法 SPH discontinuity kernel function meshfree methods
  • 相关文献

参考文献8

二级参考文献19

  • 1N’guimbi GermainDept.ofMath.,ShandongUniv.,Jinan250100.(CONGO-BRAZZAVILLE).THE EFFECT OF NUMERICAL INTEGRATION IN FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC EQUATIONS[J].Applied Mathematics(A Journal of Chinese Universities),2001,16(2):219-230. 被引量:1
  • 2张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理,1996,13(4):385-397. 被引量:84
  • 3Amick C J, Bona J L, Schonk M E. Decay of solution of some nonlinear wave equation[J]. J Difference Equaticn, 1989,81:1-49.
  • 4Bona J L,Dougalis V A. An initial- and boudary-value problem for a model equation for propagation of long waves[J]. J Math Anal Appl, 1980,75:503 ~ 522.
  • 5Wang B X. Attractons and approximate inertial manifolds for the generalized Bejamin-Bona-Mahony equation[J].Matbematical Methods in the Applied Sciences, 1997,20:189 - 203.
  • 6Chung S K. Finite difference approximate solutions for the Rosenau equation[J]. Applicable Analysis, 1998,69(1 - 2) : 149 - 156.
  • 7Choo S M, Chung S K. Conservative nonlinear difference scheme for the Cahn-Hilliard equation[J]. Computers Math Appl, 1998,36(7) : 31 - 39.
  • 8Browder F E.Existence and uniqueness theorems for solutions of nonlinear boundary value problem[A].Finn R ed.Proceedings of Symposia in Applied Mathematics[C]. Providence:AMS, 1965,17:24- 49.
  • 9CIARLET P G.The finite element method for elliptic problems[M].New York:North-Houand pablishing Company,1978.
  • 10APEL T.Anisotropic finite elements:local estimates and applications,SFB393199-03[R].Chemnitz:Technische Univesitat Chemnitz,1999.

共引文献28

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部