期刊文献+

一种基于关联规则的核粒度支持向量机 被引量:5

A Kernel Granular Support Vector Machine Based on Association Rules
下载PDF
导出
摘要 提出一种基于关联规则的核粒度支持向量机(association rules based kernel granular SVM,AR-KGSVM)学习算法。AR-KGSVM首先将输入空间中的样本用核函数映射到高维特征空间,然后在核特征空间挖掘基于距离度量的关联规则以划分粒。算法的粒划分和数据训练都是在高维核空间中进行,避免了一般的粒度支持向量机(granular SVM,GSVM)在低维空间作粒划分而在高维空间中训练,使数据分布不一致而导致泛化能力不高的问题。在标准数据集上的实验结果表明AR-KGSVM的泛化能力优于传统的SVM和GSVM方法。 This paper proposes a kernel granular support vector machine based on association rules(AR- KGSVM)learning approach. Firstly, samples in input space are mapped into high-dimensional feature space and then association rules based on distance metric are mined in kernel future space. These association rules are applied to divide granules. Both the granular dividing and data training are executed in the high-dimensional kernel space. Hence,the proposed AR-KGSVM can avoid the poor generalization performance like traditional granular SVM (GSVM) due to the inconsistent data distribution,where granules are divided in the low-dimensional space but samples are trained in high-dimensional space. The ex- perimental results on benchmark datasets demonstrate that the performance of AR-KGSVM is superior to that of traditional SVM and GSVM.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2009年第3期89-92,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(60673095) 国家863高技术研究发展计划资助项目(2007AA01Z165) 教育部新世纪优秀人才支持计划资助项目(NCET-07-0525) 教育部科学技术研究重点项目(208021) 山西省高校青年学术带头人基金资助项目 山西省留学归国人员基金资助项目(2008-14) 山西省自然科学基金重点项目(2009011017-2)
关键词 核粒度支持向量机 支持向量机 核粒度 关联规则 kernel granular support vector machine,support vector machine kernel granular lassociationrules
  • 相关文献

参考文献9

  • 1VAPNIK V.Statistical learning theory[M].New York:John Wiley & Sons,1998.
  • 2汪洋,陈友利,刘军,莫智文,王甲锋.基于相似方向的二叉树支持向量机多类分类算法[J].四川师范大学学报(自然科学版),2008,31(6):762-765. 被引量:8
  • 3林旭东,孙爱东,林丕源,刘汉兴.基于依存关系与支持向量机的中文问题分类方法[J].郑州大学学报(理学版),2009,41(1):64-68. 被引量:2
  • 4LI Wen-min,HAN Jia-wei,PEI Jian.CMAR:accurate and efficient classification based on multiple class-association rules[C]//Proceedings of the 2001 IEEE International Conference on Data Mining.Washington DC:IEEE Computer Society,2001:369-376.
  • 5YIN Xiao-xin,HAN Jia-wei.CPAR:classification based on predictive association rules[C]//Proceedings of the SIAM International Conference on Data Mining.San Francisco,CA:SIAM,2003:331-335.
  • 6LIU Bing,HSU W,MA Yi-ming.Integrating classification and association rule mining[C]//AGRAWAL R,STOLORZ P.Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining.Menlo Park,CA:AAAI Press,1998:80-86.
  • 7TANG Yun-chun,JIN Bo,ZHANG Yan-qing.Granular support vector machine with association rules mining for protein homology prediction[-J].Artificial Intelligence in Medicine,2005,35 (1):121-134.
  • 8SHE Rong,CHEN Fei,WANG Ke,et al.Frequent-subsequence-based prediction of outer membrane proteins[C]// Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2003:436-445.
  • 9HAN Jia-wei,KAMBER M.Data mining:concept and techniques[M].Beijing:China Machine Press,2001.

二级参考文献21

共引文献8

同被引文献65

引证文献5

二级引证文献945

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部