摘要
提出一种基于关联规则的核粒度支持向量机(association rules based kernel granular SVM,AR-KGSVM)学习算法。AR-KGSVM首先将输入空间中的样本用核函数映射到高维特征空间,然后在核特征空间挖掘基于距离度量的关联规则以划分粒。算法的粒划分和数据训练都是在高维核空间中进行,避免了一般的粒度支持向量机(granular SVM,GSVM)在低维空间作粒划分而在高维空间中训练,使数据分布不一致而导致泛化能力不高的问题。在标准数据集上的实验结果表明AR-KGSVM的泛化能力优于传统的SVM和GSVM方法。
This paper proposes a kernel granular support vector machine based on association rules(AR- KGSVM)learning approach. Firstly, samples in input space are mapped into high-dimensional feature space and then association rules based on distance metric are mined in kernel future space. These association rules are applied to divide granules. Both the granular dividing and data training are executed in the high-dimensional kernel space. Hence,the proposed AR-KGSVM can avoid the poor generalization performance like traditional granular SVM (GSVM) due to the inconsistent data distribution,where granules are divided in the low-dimensional space but samples are trained in high-dimensional space. The ex- perimental results on benchmark datasets demonstrate that the performance of AR-KGSVM is superior to that of traditional SVM and GSVM.
出处
《广西师范大学学报(自然科学版)》
CAS
北大核心
2009年第3期89-92,共4页
Journal of Guangxi Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(60673095)
国家863高技术研究发展计划资助项目(2007AA01Z165)
教育部新世纪优秀人才支持计划资助项目(NCET-07-0525)
教育部科学技术研究重点项目(208021)
山西省高校青年学术带头人基金资助项目
山西省留学归国人员基金资助项目(2008-14)
山西省自然科学基金重点项目(2009011017-2)
关键词
核粒度支持向量机
支持向量机
核粒度
关联规则
kernel granular support vector machine,support vector machine kernel granular lassociationrules