期刊文献+

慢性胃炎脾虚证差异表达基因识别研究 被引量:3

Identify Obstacles of Digestion and Absorption of Chronic Gastritis
下载PDF
导出
摘要 通过对慢性浅表性胃炎脾虚证与正常人、慢性浅表性胃炎脾虚证与脾胃湿热证两组胃肠粘膜配对样本的基因表达谱进行分析,在特征提取阶段分别利用W ilcoxon符号秩检验、组间和组内平方和比率(BSS/W SS)、基于相关距离的冗余分析方法,分别得到9个和12个差异基因。利用SVM作为分类器,对两组数据在此特征基因集上进行分类预测,分别达到96.67%和98.89%的预测准确率,实验结果表明该方法具有可行性和有效性。 This paper mainly aims at analysis of gastrointestinal mucosa gene expression profiles of paired samples about spleen deficiency of chronic superficial gastritis and normal people group ,and spleen deficiency of chronic superficial gastritis and piwei damp-heat group. 9 and 12 different genes are selected by using Wilcoxon signed rank test,the ratio of quadratic sum between groups and within groups (BSS/ WSS)and distance-related analysis in the process of feature selection. The forecast accuracy are 96.67% and 98.89% for two groups of data with SVM classification,which shows that the method is feasible and effective.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2009年第3期154-157,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金重大研究计划重点项目(90209004)
关键词 脾虚证 基因表达谱 特征提取 SVM spleen deficiency syndrome gene expression profiles feature extraction SVM
  • 相关文献

参考文献4

二级参考文献82

  • 1Covell DG, Wallqvist A, Rabow AA, Thanki N. Molecular classification of cancer: unsupervised selforganizing map analysis of gene expression microarray data. Mol Cancer Ther 2003, 2:317-332.
  • 2Getz G, Levine E, Domany E. Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci USA 2000,97:12079-12084.
  • 3Hastie T, Tibshirani R, Eisen MB, Alizadeh A, Levy R, Staudt L, Chan WC, Botstein D, Brown P. 'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol 2000, 1:RESEARCH0003.
  • 4Jiang H, Deng Y, Chen HS, Tao L, Sha Q, Chen J,Tsai CJ, Zhang S. Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC Bioinformatics 2004,5:81 rats. Dig Dis Sci 1995,40:2162-2169.
  • 5Lazzeroni L, Owen A. Plaid models for gene expression data. Statistica Sinica 2002,12:61-86.
  • 6Plaid models, for microarrays and DNA expression Available from: URL: http://www-stat, stanford.edu/-owen/plaid.
  • 7Wang J, Delabie J, Aasheim H, Smeland E,Myklebost O. Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study. BMC Bioinformatics2002, 3:36.
  • 8Herrero J, Dopazo J. Combining hierarchical clustering and self-organizing maps for exploratory analysis of gene expression patterns. J Proteome Res 2002,1:467-470.
  • 9Tsai CA, Lee TC, Ho IC, Yang UC, Chen CH, Chen JJ. Multi-class clustering and prediction in the analysis of microarray data. Math Biosci 2005, 193:79-100.
  • 10Brock A, Huang S, Ingber DE. Identification of a distinct class of cytoskeleton-associated mRNAs using microarray technology. BMC Cell Biol 2003, 4:6.

共引文献17

同被引文献91

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部