期刊文献+

基于奇异值分解的UT变换 被引量:1

UT Transformation Based on Singular Value Decomposition
下载PDF
导出
摘要 在基于Kalman滤波的非线性滤波方法中,近年来提出的无味滤波(Unscented Kalman Filter)以其计算简单和近似精度更高而受到青睐。这就需要利用UT变换(Unscented Transformation也称无味变换)求非奇异的协方差矩阵的平方根,而对于奇异的协方差矩阵或者在Kalman滤波更新中由于数值计算导致的误差方差阵奇异时,传统的UT变换已不实用。本文对上述问题进行了讨论,提出了基于奇异值的UT变换来处理奇异的方差阵,并用数值模拟证明了这一方法的有效性。 The Kalman filter is widely applied in target tracking. The classical Kalman filter requests the system must be linear, but in engineering practice there are many nonlinear systems. In the nonlinear filters based on Kalman filter, the unscented Kalman fil- ter attracts the interest of many researchers due to its simple computation and high accurate approximation. The unscented transforma- tion is used to calculate the square root of the nonsingular covariance matrix, but the actual situation or the numerical calculation often causes the matrix to be singular. Therefore, the traditional unscented transformation has not been used at present. The paper proposes an unscented transformation based on singular value decomposition to deal with the singular matrix. Numerical simulation is conducted to verify the validation of this algorithm.
作者 王成理 王维
出处 《西华大学学报(自然科学版)》 CAS 2009年第5期42-44,共3页 Journal of Xihua University:Natural Science Edition
关键词 KALMAN滤波 无味滤波 UT变换 奇异值分解 kalman filter unscented filter unscented transformation singular value decomposition
  • 相关文献

参考文献7

  • 1Horn R A and Johnson C R. Matrix Analysis[M]. Cambridge:Cambridge University Press, 1985.
  • 2Simon D J. Optimal State Estimation [ M ]. [ S. l ] :John Wiley & Sons, 2006.
  • 3S. Julier, J. Uhlmann, and H. Durrant-Whyte. A new method for the nonlinear transformation of means and covariances in filters and estimators[ J]. IEEE Transactions on Automatic Control. 2000, 45 (3): 477-482.
  • 4S. Julier and J. Uhlmann. Unscented filtering and nonlinear estimation [ J ]. Proceedings of the IEEE. 2004, 92 ( 3 ) : 401-422.
  • 5Julier S. J. , Uhlmann J. K.. Unscented filtering and nonlinear estimation[ J]. Proceedings of the IEEE ,2004,92 ( 3 ) :401-422.
  • 6Merwe R. , Doucet A. , Freitas Nando de, Wan Eric. The un-scented particle filter [ R ]. Cambridge University, engineering department: Technical report, CUED/ F-INFENG/TR 380,2000.
  • 7Welch G. ,Bishop G.. An introduction to the kalman filer[ R].University of North Carolina at Chapel Hill: Technical Report, TR 95- 041,2004.

同被引文献7

  • 1杨峰,潘泉,梁彦,叶亮.多源信息空间配准中的UT变换采样策略研究[J].系统仿真学报,2006,18(3):713-717. 被引量:15
  • 2HallDL,Llinas J.多传感器数据融合手册[M].杨露菁,耿伯英,译.北京:电子工业出版社,2008.
  • 3MAHLER R. Multi-target Byes Filtering via First- order Multi-target Moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003,39 (4) : 1152- 1178.
  • 4JUL1ER S J, UHLMAN J K, DURRANT-WHYTE H F. A New Method for the Nonlinear Trans formation of Means and Covariance in Filters and Estimators [J]. IEEE Transactions on Automatic Control, 2000,45 (3) : 477-482.
  • 5SUCHOMSKI P. Explicit Expressions for Debased Statistics of 3D Converted Measurements [J]. IEEE Transactions on Aerospace and Electronic Systems,1999,35(1):368-370.
  • 6宋元,章新华,许林周.基于UT变换的传感器航迹数据无偏转换[J].数据采集与处理,2009,24(B10):111-114. 被引量:3
  • 7刘毅,李鑫.基于UT变换与卡尔曼滤波的目标跟踪研究[J].计算机工程与设计,2010,31(14):3331-3335. 被引量:8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部